Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неметаллы молекулы и ионы, строение

    Бинарное соединение. Бесцветная жидкость (слой более 5 м толщиной окращен в голубой цвет), без вкуса и запаха. Молекула имеет строение дважды незавершенного тетраэдра [ 0Н2] (sp -гибридизация). Летучее вещество, термически устойчивое до 1000 °С. Твердая вода (лед) легко возгоняется. Природная вода по изотопному составу водорода в основном HgO с примесью Н НО, по изотопному составу кислорода в основном Н2 0 с примесью Нг О и Н2 О. В малой степени подвергается автоионизированию (автопротолизу) до Н+ или, точнее, до Н3О+ и ОН . Катион оксония Н3О+ имеет строение незавершенного тетраэдра [ 0(Н)з] (sp -гибридизация). В водном растворе ион НзО" — самая сильная кислота, ион ОН — самое сильное основание, вода — самая слабая кислота (по отношению к иону ОН ) и основание (по отношению к иону Н3О+). Жидкая вода ассоциирована за счет водородных связей до (НгО) (при комнатной температуре л = 4). Образует кристаллогидраты со многими солями, аквакомплексы — с катионами металлов. Реагирует с металлами, неметаллами, оксидами. Вызывает электролитическую диссоциацию кислот, оснований и солей, гидролизует многие бинарные соединения и соли. Подвергается электролизу в присутствии сильных электролитов. Почти универсальный жидкий растворитель неорганических веществ. Для химических целей природную воду очищают перегонкой (дистиллированная вода), для промышленных целей умягчают, устраняя временную и постоянную жесткость (см. 41 , 43 ), или полностью обессоливают, пропуская через иониты в кислотной Н -форме и щелочной ОН -форме (ионы солей осаждаются на ионитах, а ионы Н + и ОН переходят в воду и взаимно нейтрализуются). Питьевую воду обеззараживают хлорированием (старый способ — см. 67 ) или озонированием (современный, но дорогой способ озон не только окисляет вредные примеси подобно хлору, но и увеличивает содержание растворенного кислорода — см. 71 ). [c.153]


    Наиболее важной из всех связей этого типа является ионная связь, обусловленная электростатическн1М притяжением избыточных электрических зарядов противоположно заряженных ионов. Атомы металлов, например, легко теряют свои внешние электроны, а атомы неметаллов, наоборот, стремятся присоединить добавочные электроны. Таким образом, могут возникнуть устойчивые катионы и анионы, которые в основном сохраняют свое электронное строение при приближении друг к другу и при образовании молекулы или кристалла. В кристаллах галогенидов щелочных металлов нет отдельных молекул МеХ. Кристаллы состоят из катионов металла и анионов галоида. Кристаллическая решетка большинства галогенидов тюстроена так, как это изображено на рис. 3 для хлористого натрия. [c.32]

    I6.5. Элементы А, В и С имеют порядковые но.мера 4, 9 и 18 и атомные веса 9, 19 и 40 соответственно, а) Укажите все, что сможете, об атомной структуре каждого из этих элементов, б) Классифицируйте, какие из ннх являются металлами, какие неметалла.ми. в) Приведите формулы соединений, которые могут образовываться из этих элементов, и укажите, будут лн возникающие при этом молекулы иметь ионное строение, будут полярны.ми пли неполярными. [c.498]

    Строение комплексных соединений. В комплексных соединениях различают центральный атом , или ион-комплексообразова-тель, вокруг которого располагаются молекулы или ионы. Комп-лексообразователями могут быть ионы металлов (Си +, Ад+, Ре +, СоИ и др4 редко нейтральные атомы металлов (Ре, Сг, Мп и др.) атомы неметаллов в положительной степени окисления (5+ , В+ Р+ и др.) отрицательные ноны (5 -, I- и др.). [c.39]

    Что же касается общетеоретических вопросов, то при описании многих тем школьного курса химии учение о периодичности позволяет глубже раскрыть их содержание. Так, при изучении водных растворов следует обратить внимание на свойства растворителя (вода) и свойства растворяемых веществ (типы связи, строение молекулы, степени окисления), которые определяют такое свойство веществ, как их растворимость, поведение в воде (электролитическая диссоциация, гидролиз, окисление—восстановление). При описании состава химических соединений следует обратить внимание на взаимосвязь классификации соединений по составу с положением элементов в системе (совокупность свободных атомов, номер группы и периода). Это дает возможность устанавливать связи между разными классами соединений (оксиды, фториды, хлориды, гидриды, интерметаллиды) и видеть особенности каждого из них по составу (насыщенные или ненасыщенные молекулы), по агрегатному состоянию и строению (водородные соединения неметаллов, как правило, газообразны при обычных условиях, гидриды типичных металлов — ионные кристаллы) и т. п. [c.71]


    Для характеристики места алюминия в подразделении элементов на металлы и неметаллы интересны свойства его хлорида. Хлориды типичных металлов имеют ионную решетку и представляют собой твердые тугоплавкие и нелетучие вещества, тогда как хлориды неметаллов имеют молекулярную решетку и представляют собой летучие жидкости или газы. Хлорид алюминия Рис 234. Строение молекулы занимает промежуточное положение хлористого алюминия, [c.663]

    По современным представлениям, из молекул состоят лишь вещества молекулярного строения, например неметаллы (кроме углерода и кремния), двуокись углерода, вода, органические соединения с неионной связью. Вещества немолекулярного строения состоят не из молекул, а из других частиц (атомов, ионов), химически связанных друг с другом, например алмаз, кремний, многие оксиды, сульфиды металлов, большинство солей. У первых веществ химическая связь между молекулами менее прочная, чем между атомами. Поэтому они имеют сравнительно низкие температуры плавления и кипения. У вторых веществ — с немолекулярным строением — химическая связь между частицами весьма прочная. Поэтому они имеют высокие температуры плавления и кипения. [c.11]

    Большинство основных идей, необходимых для понимания стереохимии, было обсуждено в гл. 5, а в гл. 7 будет кратко рассмотрено стереохимическое строение комплексных ионов и молекул. Таким образом, здесь рассмотрение будет ограничено простыми неорганическими молекулами и ионами, например таким, как 1С1 , которые не обсуждаются в гл. 7, так как центральным атомом является неметалл. [c.193]

    При особом рассмотрении водорода нельзя не обратить внимания на его исключительное сходство с галогенами. Несмотря на некоторые различия, он обладает рядом характерных, общих с галогенами свойств. Так же как и галогены, он является неметаллом и, так же как и последние, в элементарном состоянии образует двухатомные молекулы. В этих молекулах, как в случае галогенов, так и в случае водорода, атомы связаны простой связью. Работа, необходимая для разложения молекул на атомы, постепенно убывает в ряду Н—С1—Вг—Р—I. Так же как галогены, водород может выступать в качестве электроотрицательного иона, т. е. водород аналогично галогенам обладает сродством к электрону. Последнее означает, что в случае присоединения одного электрона к нейтральному атому Н, выделяется энергия. Так же как водород, галогены в соединениях, где они отрицательно заряжены, исключительно одновалентны. Соединения водорода с металлами, в которых водород является электроотрицательной составной частью по строению и характеру связи, соответствуют аналогичным соединениям галогенов. По своему строению эти вещества подобны солям, и поэтому водород в полном смысле слова можно считать солеобразователем . Точно также и работа, которая должна быть затрачена, чтобы получить положительно заряженный водород, т. е. атом водорода с отщепленным электроном, является отнюдь не меньшей, чем у галогенов (за исключением фтора). В этом можно убедиться, сравнив ионизационные потенциалы (см. стр. 140). [c.42]

    Конечные комплексы включают в себя все молекулы и конечные комплексные ионы. Как уже отмечалось, они являются единственными типами комплексов, существование которых возможно и в других агрегатных состояниях. К. молекулярным кристаллам относится большинство твердых органических соединений, а также кристаллические формы большинства сульфидов, галогенидов, гидридов и простых окислов неметаллов. В простейшем типе молекулярного кристалла существуют идентичные неполярные молекулы, удерживаемые связями ван-дер-Ваальса. Строение этих кристаллов (шределяется наиболее плотной упаковкой структурных единиц данной формы, удерживаемых ненаправленными силами. Если молекула имеет приблизительно сферическую форму, то может получаться такой же структурный тип, как и в кристаллах с трехмерными комплексами, причем группа атомов замещает единичный атом (сравнить структуры Sb40g, стр. 476, и алмаза, стр. 495). Если форма молекулы отклоняется от сферической, то структуры становятся более сходными со структурами кристаллов, содержащих одно- или двухмерные комплексы. Крайним примером является углеводород j u Hjaobi который для многих целей можно рассматривать как бесконечную цепочку. Например, порошковые рентгенограммы углеводородов с длинной цепью остаются практически постоянными для молекул, в цепи которых содержится более 130 атомов. Более сложные типы молекулярных кристаллов возникают в тех случаях, когда вместе упакованы разные молекулы, например, как в Hlg-SSg, и когда между некоторыми парами атомов различных молекул существует водородная связь. В последнем случае найдена совершенно отличная и менее плотная упаковка, причем возникает много интересных структурных типов, описанных в гл. VII. [c.166]

    Нельзя писать структурную формулу МаС1 как Ма—С1. В кристалле поваренной соли молекулы отсутствуют. В узлах кристаллической решетки соли расположены ионы N3+ и С1 , причем каждый ион натрия окружен шестью ионами хлора, и наоборот. В этом случае формула Ыа—С1 не отражает действительного расположения ионов в молекуле, а потому она не является структурной формулой. То же можно сказать и о всех соединениях, которые имеют ионные кристаллические решетки (окислы металлов, основания, соли). Так, формула 0 = А1— —О—А1 = 0 также не является структурной это ионное соединение. В кристаллической решетке АЬОз тоже отсутствуют молекулы. Написанная формула есть лишь графическое изображение, показывающее, что атомы алюминия не связаны между собой, они связаны с атомами кислорода. Не соединены между собой и атомы кислорода, они соединены с атомами алюминия. Формула указывает валентность элементов, но не указывает порядка соединения атомов друг с другом в веществе (это отражает структурная формула, она очень сложная). Структурными формулами можно выражать строение соединений, имеющих ковалентную связь. К ним относятся большинство органических соединений, многие кислоты и некоторые окислы неметаллов. [c.50]


    Деление фторидов на ионные и неионные является произвольным, так как резкого различия между разными типами связей не суш ествует. Более вероятно, что имеет место постепенный переход от соединений с ионной решеткой, каковыми являются фториды щелочных металлов, к соединениям. с ковалентной связью, к каковым относятся газообразные фториды неметаллов. К сожалению, химия неорганических фторидов исследована далеко не полно, а физические характеристики соответствующих соединений (структура молекул, межатомные расстояния, электропроводность в расплавленном состоянии и т. д.), которые могли бы помочь решению проблемы, связанной со строением молекул этих соединений, не всегда могут быть получены. В этих условиях может быть оправдано применение произвольного критерия, примером одного из которых может служить допущение, что наиболее летучие фториды представляют собой соединения неионного типа. Именно благодаря этому допущению многие летучие фториды и оксифториды металлов, начиная с четвертой и кончая восьмой группой, рассматриваются в основном во второй статье этой книги вместе с фторидами типичных неметаллов. В этой статье они рассматриваются лишь постольку, поскольку это необходимо для того, чтобы нарисовать общую картину всего ряда фторидов, образуемых различными элементами. Другой характерной чертой этих фторидов как соединений промежуточного типа является образование фторокислот последние подробно рассмотрены в третьей статье. Было показано, что если металл образует несколько различных фторидов, то летучесть повышается с увеличением валентности металла. Поэтому в этом разделе подробно удалось описать только нелетучие фториды, соответствующие низшим степеням валентности. Именно так обстоит дело, нанример, с платиновыми металлами, а также с другими элементами переходных групп. [c.9]


Смотреть страницы где упоминается термин Неметаллы молекулы и ионы, строение: [c.233]    [c.233]    [c.276]    [c.53]    [c.51]   
Справочник по общей и неорганической химии (1997) -- [ c.42 , c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Молекула ионная

Молекула строение

Неметаллы



© 2024 chem21.info Реклама на сайте