Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наполнители порошковые

    ПОРОШКОВЫЕ КРАСКИ, высокодисперсные композиции, применяемые для получения защитных, Д(-ко])атив ых и др. покрытий по металлу, бетону, стеклу, керамике и др. термостойким материалам. Осн. компоненты — пленкообразующие в-ва (эпоксидные или полиэфирные смолы, полиакрилаты, полиамиды, поливинилхлорид, пентаплаа, полиэтилен, поливинилбутираль, фторопласты и др.) и пигменты, напр, оксиды Сг, ре, Т , сажа содержат, крометого, пластификаторы, наполнители, отвердители, стабилизаторы, а также добавки, улучшающие сыпучесть краски н ее растекание по подложке. Изготовляют П, к. смешением сухих компонентов в мельницах (напр,, шаровых, коллоидных) или в турбосмесителях, а также смешением в расплаве в экструдерах или лопастных смесителях с послед, измельчением в дробилках. Размер частиц П. к. 10—300 мкм, толщина образуемых ими покрытий 50—400 мкм. [c.474]


    По способу холодного прессования сначала изготовляют сырые круги, которые затем сушат в печи, а потом отверждают. По способу прямого прессования круги изготовляют и отверждают за одну операцию. Для приготовления формовочной массы обычно применяют два смесителя в первом смешивают абразивный порошок с жидкой смолой, а во втором — порошковую смолу, добавки и наполнители. Приготовление смеси необходимо производить в помещении с кондиционированием воздуха при постоянной температуре и влажности. [c.231]

    Основной метод переработки фенопластов в изделия — горячее прессование. В зависимости от применяемых наполнителей различают следующие виды пресс-материалов на основе фенольных смол пресс-порошки — с порошковым наполнителем волокниты — с хлопковым наполнителем стекловолокниты — со [c.165]

    За последние годы карбонильное железо в Советском Союзе и за рубежом широко применяют в качестве ферромагнитного наполнителя для электромагнитных порошковых муфт и тормозов. Действие этих новых элементов автоматики основано на свойстве жидкого или порошкообразного ферромагнитного наполнителя увеличивать под действием магнитного поля свою вязкость и прочно прилипать к поверхностям магнитной системы [113]. [c.221]

    Полимерные клеи на основе изоцианатов и гидроксилсодержащих соединений (главным образом олигоэфиров). Могут содержать инициаторы отверждения (воду, спирты, водные растворы солей щелочных металлов и карбоновых кислот), порошковые наполнители (оксиды титана и цинка, цемент и др.), растворители (кетоны, спирты, хлорзамещенные углеводороды), добавки полимеров. Они могут быть реактивными и термопластичными. Реактивные могут быть двухупаковочными и одноупаковочными. Двухупаковочные смешивают непосредственно перед применением, жизнеспособность смеси 1-3 ч, смесь отверждается при комнатной температуре в течение не менее 3-6 ч. Основа одноупаковочных клеев - полиуретановый форполимер, содержащий свободные изоцианатные группы. В герметично закрытой емкости они хранятся до 1 года. Быстро отверждаются при комнатной температуре после нанесения на склеиваемые поверхности, адсорбируя влагу с поверхности и из воздуха. Одноупаковочные могут быть в виде растворов или дисперсий. Клеи выпускают в виде жидкостей различной вязкости. Полиуретановые клеи применяют при сборке конструкций из ила- [c.214]

    В ряде случаев металлические порошки применяют самостоятельно в качестве катализаторов, наполнителей порошковых муфт, тормозов и т. д. [c.203]


    Ненапол-ненная композиция (два оптимальных варианта на основе смол ЭД-5 и ЭД-6) Наполнитель порошковый волокнистый Отвердитель [c.20]

    Второй метод (термический) является основным методом получения ПИ и осуществляется при нагревании. Приготовленные из раствора ПАК пленки или волокно, либо пропитанный раствором ПАК наполнитель (порошковый, стекловолокно или стеклянную ткань) высушивают от растворителя в термокамере при 120— 150°С в атмосфере сухого азота. При этом примерно за 20 ми происходит циклизация части звеньев ПАК на 40—90%. Процесс циклизации заканчивают при более медленном повышении температуры до 300 °С (за 1 —1,5 ч) в вакууме или в атмосфере сухого азота. ПИ с оптимальными свойствами получают при максимальной циклизации амидных звеньев полимера в имидные. [c.298]

    Иногда пластмассы называют по характеру наполнителя порошковые, волокнистые, слоистые и т. д. [c.13]

    Формовочная смесь должна быть однородной, обладать текучестью, но сохранять достаточную пластичность, в наличии которой можно убедиться ири легком нажатии рукой. В процессе смешения композиция сильно нагревается. Массовое соотношение жидкой фенольной и порошковой смол обычно находится в пределах от 1 2 до 1 4 и определяется распределением абразивных зерен по размеру, типом и количеством используемого наполнителя и вязкостью жидкой смолы. Смесь подают в форму, расположенную на вращающемся столе, и равномерно заполняют ее полости. Разравнивание материала в форме производят с помощью [c.231]

    Порошковая краска—это композиция, составленная из порошкообразных пленкообразователя, пигмента, наполнителя. [c.11]

    С целью получения порошковых красок с необходимыми технологическими свойствами и достижения хороших эксплуатационных свойств покрытий на их основе полимеры или олигомеры совмещают с отвердителями, пластификаторами, пигментами, наполнителями и другими веществами. [c.88]

    Укрывистость достигается введением в ЛКМ наполнителей и пигментов. Последние могут выполнять также и др. ф-ции окрашивать, повышать защитные св-ва (противокоррозионные) и придавать спец. св-ва покрытия.м (напр., электропроводимость, теплоизолирующую способность). Объемное содержание пигментов в эмалях составляет < 30%, в грунтовках-ок. 35%, а в шпатлевках-до 80%. Предельный уровень пигментирования зависит также от типа ЛКМ в порошковых красках- 15-20%, а в воднодисперсионных-до 30%. [c.570]

    Технологический процесс производства премиксов заключается в том, что в смеситель периодического действия (например, двухвальный) загружают полиэфир, инициатор и пигмент в виде пасты, перемешивают, а затем вводят смазку. После дополнительного перемешивания загружают порошковый наполнитель, снова перемешивают и, наконец, прибавляют рубленое стекловолокно или другой волокнистый наполнитель, после чего следует окончательное смешение. При использовании смесителей непрерывного действия процесс можно проводить непрерывно. Готовый премикс представляет собой тестообразную композицию или гранулы его можно хранить не более 3—6 мес в темном помещении при температуре не выше 20 °С. [c.212]

    Наибольшее распространение в качестве наполнителя малогабаритных порошковых муфт получили ферромагнитная смесь на основе карбонильного железа, изолированного окисью кремния, с использованием в качестве наполнителя окиси цинка, служащего разделителем, и карбонильное железо, изолированное окисью алюминия. [c.223]

    Весьма перспективно применение ХПЭ как высокомолекулярного пластификатора в составах для порошковых красок, например, на основе эпоксидных смол. Эти составы можно отверждать тем же отвердителем, что и эпоксидные смолы, и получать покрытия со значительно более высокой эластичностью, химстойкостью и теплостойкостью. ХПЭ может и самостоятельно применяться в порошковых композициях. Так, порошковая композиция, содержащая 100 масс. ч. ХПЭ, 10—50 масс. ч. наполнителя и 15— 40 масс. ч. испаряющегося инсектицида, используется для получения специальных покрытий.. Покрытие формируется при температуре около 80 °С, безвредно при использовании [60]. [c.178]

    Способы изготовления пористых трубчатых каркасов (опор и подложек). Пористые трубчатые опоры изготовляют различными способами набивкой на оправу нескольких слоев филаментного синтетического волокна или стекловолокна с последующей частичной пропиткой обра зованной конструкции смолой, плетением рукавов из синтетических ни тей или нержавеющей проволоки, перфорацией металлических труб прессованием из керамических, металлокерамических или пластмассо ВЫХ порошковых материалов, пропиткой наполнителя термопластами а также на основе поропластов. С целью снижения гидравлического сопротивления потоку фильтрата в плетеных и витых опорах между слоями иногда укладывают продольные волокна, а в непористых опорах на рабочей поверхности делают продольные пазы. С этой же целью иногда опоры изготовляют из пучков волокон или из гофрированной ткани, образующей после ее пропитки смолой и отверждения жесткий пористый каркас с продольными каналами для отвода фильтрата [122]. [c.126]

    Значительное влияние на электропроводность рассматриваемых порошковых смесей оказывает эффект структурирования. Частицы фритты примерно в 100 раз крупнее частиц наполнителя. При при- [c.60]

    На основе АФС, огнеупорных наполнителей и активирующих процесс химических добавок разработаны клеи и покрытия, пригодные для склеивания и защиты конструкционных материалов, работающих в условиях высоких температур и агрессивных сред. Адгезия к стали (прочность при отрыве), в МПа — 7—10, к алюминию — 6—8, текстолиту — 5—7. Вводя в композицию, наряду с инертным наполнителем, активный порошковый ком- [c.127]


    Эффективность антикоррозионных покрытий в химической промышленности и для защиты металлических строительных конструкций показана в работе [152]. Для покрытий по металлическим конструкциям используют шликер на основе водных растворов гидрофосфатов и порошкового наполнителя — оксидов и гидроксидов с основными и амфотерными свойствами или порошков металлов с частицами не крупнее 10 мкм. При сушке покрытия при 80—100 °С взаимодействие кислых солей с наполнителем приводит к образованию средних фосфатов, нерастворимых в воде, т. е. к отвердеванию покрытия. Фосфорная же кислота и кислые фосфаты, взаимодействуя с металлом, обеспечивают адгезию к металлу и его фосфатирование. Интенсивность взаимодействия с металлом регулируется соотношением наполнитель/связующие, концентрацией связующего и режимом сушки. Фосфатные покрытия обеспечивают защиту и при сочетании высокой влажности и повышенной температуры (150—160 °С) (подземные теплопроводы). Хорошо себя зарекомендовал антикоррозионный фосфатный грезит при защите стали Ст.З от атмосферной коррозии. [c.131]

    Контроль акустических свойств композиционных материалов на основе алюминиевой матрицы. Одними из перспективных являются материалы, получаемые методом порошковой металлургии из дисперсных порошков пластичного металла (алюминия, титана или никеля) и твердой керамики (окиси алюминия, карбида кремния и др.), выполняющей роль армирующего компонента. Эти порошки смешивают и прессуют в формах в защитной атмосфере при давлении порядка 40 МПа и температуре 590. .. 600 °С. Сочетание пластичности металлической матрицы с твердостью и жесткостью армирующего керамического наполнителя придает материалу прочность и износостойкость. [c.797]

    Группа материала, кодируемая двумя знаками, охватывает материалы, щироко применяемые в мащино- и приборостроении. Пластические массы делятся на термопласты и реактопласты, а также различаются по виду наполнителя (порошковый, волокнистый, слоистый, газообразный). [c.9]

    Термореактивные пластмассы классифицируют по типу наполнителя порошковые (древесная мука, асбестовый порошок, кварцевая мука и др.), волокнистые (хлопчатобумажные очесы, асбестовое волокно, стеклянное волокно), листовые (бумага, хлопчатобумажная ткань, стеклянная ткань, древесный шпон). Изделия из отвержденных П. м. выдерживают длительное действие нагрузки при 100—350° (в зависимости от типа полимера и наполнителя). Термореак-тивны е П. м. используют для произ-ва изделий, работающих при повышенных нагрузках, выдерживающих длительное тепловое воздействие, резкие изменения атмосферных воздействий, обладающих хорошими диэлектрич. свойствами и др. (детали и корпуса приборов, детали машин, трубонроводы, корпуса судов, детали автомобилей и др.). [c.27]

    Смесь Ф-4 с 15% (масс.) размолотого стекловолокна или со стекло-наполнителем порошковым Ф-4С15 ТУ 6-05-1412-76 4.391 0100 1,90 [c.93]

    Для измельчения отходов синтетического каучука и резины применяют роторное измельчение, криогенный процесс переработки отработанной резины, дробилки ударного действия в сочетании с низкотемпературной обработкой отходов, растворение иод давлением сжиженного газа в каучуке и последующее мгновенное его дросселирование. Применение новых УДА-уста-1ЮВ0К (универсального дезинтегратора — активатора) позволяет диспергировать и активировать отходы резины, придавая им новые свойства, получить ценный порошковый наполнитель для полимеров. [c.143]

    Политетрафторэтилен — пластичный материал, известный также под названиями фторопласт-4 и тефлон, применяют для поршневых колец и уплотняющих элементов сальников не в чистом виде, а с различными наполнителями, повышающими его прочность, износоустойчивость и теплопроводность. В качестве наполнителей используют стекловолокно (15—25%), бронзу (до 60%), двухсернистый молибден (5%), графит или порошковый кокс. Отечественные заводы чаще всего применяют для колец фторопластовые материалы двух марок для влажных газов 4К-20 (фторопласт-4 с добавкой порошкового кокса) и для сухих газов АФГМ (фторопласт-4 с добавкой графита и двухсернистого молибдена). Фторопластовые кольца изготовляют с одним разрезом, а при диаметрах более 620 мм применяют сегментные кольца, состоящие из трех частей. Вследствие малой упругости фторопласта уплотняющие кольца устанавливают вместе с экспандером из нержавеющей стали или из бронзы. Для направления поршня в цилиндре служат направляющие кольца, выполненные из тех же композиций, что и уплотняющие. ЬЕаправляющие кольца могут быть цельными и с разрезом. Цельные кольца напрессовывают на поршень в холодном состоянии. [c.243]

    Роль пластмассовых покрытий в современной технике трудно переоценить. Превосходная химическая стойкость, водостойкость, погодоустойчивость, стойкость к изменению температуры и другие свойства полимерных материалов позволяют использовать их для защиты от коррозии и агрессивного воздействия химических сред самого разнообразного химического оборудования, трубопроводов, строительных конструкций. Пластмассовые покрытия позволяют повысить срок службы обычных конструкционных материалов, а это означает, что в ряде случаев нет необходимости применять дорогостоящие нержавеющие стали и сплавы. Хорошие декоративные свойства пластмасс в сочетании с такими свойствами, как устойчивость к воздействию микроорганизмов, низкая газопроницаемость, отсутствие токсичности и т. д. дают возможность использовать пластмассы для создания различных слоистых материалов, успешно применяемых для декоративного оформления и упаковки. Покрытия на различные изделия и рулонные материалы могут быть нанесены разными способами в зависимости от физических свойств полимерного материала, а также от вида покрываемого изделия. Для создания покрытий полимерные материалы могут использоваться в виде расплавов, растворов, порошков, пленок. Одним из наиболее интересных является метод нанесения порошкообразного полимера в псевдоожижениом слое. Покрытия на основе высокомолекулярных эпоксидных смол на металлических деталях самого сложного профиля могут быть получены окунанием предварительно нагретой детали в ванну, в которой находится псевдоожиженная порошкообразная смола и отвердитель. Для нанесения покрытий на наружные и внутренние поверхности крупногабаритных конструкций разработаны различные конструкции многокомпонентных распылителей, с помощью которых можно наносить на поверхность как жидкие композиции, так порошковые и волокнистые наполнители. Несколько лет назад появились сообщения о вакуумном методе нанесения пленочных покрытий. Покрытия в этом случае образуются путем приклеивания под вакуумом полимерной пленки к поверхности изделия [235]. [c.195]

    Порошковые краски на основе ПВБ не содержат растворителей, при их нспользованин увеличивается производительность и улучшаются условия труда, устраняется загрязнение окружающей среды. Покрытия наносят на защищаемые поверхности метода--ми напыления, электростатического осаждения с последующим оплавлением полимера [134, с. 11]. В состав порошковых красок кроме ПВБ входит 5—6% (об.) пигментов и наполнителей могут добавляться отвердители (фенолоальдегидные смолы, многоосновные неорганические кислоты, кислые алкиды, полиизоцианаты), нелетучие пластификаторы, в том числе твердые (фтали-мид, дифенилфталат, окси- и ацетоксиароматические кислоты) [134, с. 15]. Порошковые краски из ПВБ применяют как защитно-декоративные при отделке приборов, деталей машин и механизмов, они обладают хорошей масло- и бензостойкостью. [c.157]

    Фторопласту-4 присущи недостатки он имеет малую твердость, плохо сопротивляется деформациям, при работе без смазки быстро изнашивается. Теплопроводность фторопласта-4, составляющая X = = 0,25 втЦм-град), исключительно мала — приблизительно в 180 раз меньше, чем у стали. Линейный же коэффициент теплового расширения этого материала весьма высок — в области температур, при которых в компрессоре работают подвижные уплотнения, он находится в пределах (110—150) 10 град , т. е. более чем в 10 раз выше, чем для стали и чугуна. В связи с такими недостатками фторопласт-4 для поршневых колец и уплотняющих элементов сальника применяют не в чистом виде, а с различными наполнителями, повышающими его износоустойчивость, прочность и теплопроводность. Наполнителями являются стекловолокно (15—25%), бронза (до 60%), графит или порошковый кокс. Применяются и композиции с комбинированными наполнителями — стекловолокно (20%) и графит, стекловолокно (15%) и двусернистый молибден (5%). Добавка стекловолокна чрезвычайно увеличивает износоустойчивость фторопласта-4 (в 200 раз), повышая одновременно его твердость и прочность. Графит и кокс также повышают механические свойства фторопласта-4, увеличивая одновременно его теплопроводность. Наибольшее повышение теплопроводности и износоустойчивости достигается при добавке бронзы, но ее нельзя применять при возможности коррозии или образования взрывоопасных соединений с газом. [c.647]

    Общеизвестна роль связующего в качестве вещества, адгезионно скрепляющего частицы углеродных цорошков. Толщина прослойки и пористая структура образующегося кокса, а также характер усадочных изменений при спекании и графитации оказывают значительное влияние на формирование структуры и свойств углеграфитовых материалов. Все это определяется химическими и физико-химическими параметрами связующего. Например, выход кокса находится в тесной связи со степенью ароматизации связующего. Очевидно, что условия взаимодействия порошков и связующего не имеют аналогии с эффектом нацолнения полимеров, несмотря на кажущееся сходство. В последнем случае наполнители предназначены для изменения в заданном направлении свойств полимера, являющегося основой материала. В углеграфитовых же композициях основная роль в формировании структуры и свойств принадлежит порошковым компонентам, которые, естественно, нельзя назвать наполнителями. [c.121]

    Одним из основных и в то же время изученных факторов, определяющих качество графитированного материала, является гранулометрический состав исходной щихты — кокса — наполнителя. Большинство методов подбора рационального грансостава базируется на принципе максимальной плотаости укладки зерен (насыпной массе) смеси порошковых материалов с учетом технологических факторов и размеров изготовляемых изделий [1, 2, 3]. В работе [4] показано, что одного этого признака недостаточно, чтобы судить о свойствах продукта. Одинаковую плотность укладки зерен можно получить при совершенно разных фракционных составах наполнителя, при этом свойства полученного графита будут также отличаться. [c.135]

    КРАСКИ, однородные суспензии пигментов или их смесей с наполнителями в пленкообразователях, дающие после высыхания твердые непрозрачные покрытия. Могут содержать также р-рителн, пластификаторы, отвердители, сиккативы, стабилизаторы, структурообразователи, матирующие в-ва и др. добавки. К. подразделяют по виду плеикообразователя. Так, основой эмалевых К. (или просто эмалей) служат лаки, масляных красок-высыхающие масла или олифы, силикатных красок-жидкое стекло, клеевых красок - водные р-ры растит, и животных клеев, дисперсионных-дисперсии пленкообразователей в воде (см. Водоэмульсионные краски) илн орг. р-рнтелях. К дисперсионным относят также порошковые краски (аэродисперсии). Кроме того, К. делят по областям применения, напр, автомобильные, строительные, полиграфические, художественные. [c.495]

    Мех. активация твердых тел заключается в создании долгоживущих нарушений атомной структуры с целью изменения структурно-чувствит. св-в в-ва, прежде всего реакц. способности. Чаще всего активируют порошковые материалы мех. обработка порошков сопровождается накоплением точечных дефектов, дислокаций, аморфных областей, увеличением площади межзеренных границ, образованием новых пов-стей (см. Дефекты). Энергетич. выходы образования структурных дефектов, как правило, не превышают 10 -10 моль/МДж. В результате мех. нарушения атомной структуры повышаются р-римость в-ва и скорость растворения, облегчаются р-ции с молекулами среды и др. твердыми телами, на десятки и сотни градусов снижаются т-ры твердофазного синтеза, термич. разложения, спекания. Механически активируют наполнители (графит и др.), фосфатные удобрения, прир. и синтетич. полимеры и др. материалы. Мех. активация увлажненного диоксида кремния и нек-рьк др. оксидов придает им вяжущие св-ва и является основой безобжиговой технологии жаропрочных материалов. [c.77]

    Производят ТП в виде гранул или порошков. Для наполнения с целью снижения стоимости, повышения стабильности формы изделий и улучшения эксплуатац. св-в чаще всего используют коротковолокнистые наполнители орг. или неорг. природы и минер, порошки. Эти наполнители, а также модифицирующие добавки вводят чаще всего при переработке-гранулировании ТП, реже на стадии синтеза полимера (см. Полимеризация на наполнителях). При использовании непрерывшлх волокнистых наполнителей их пропитывают р-ром или расплавом полимера. Применяют также методы пленочной, волоконной или порошковой технологии, в к-рых наполнитель сочетают с ТП, находящимся в форме пленки, волокна или порошка соотв. на стадии формования изделий из таких пластмасс ТП расплавляются и наполнитель пропитывается ими. [c.564]

    См. также Сыпучие материалы, индивидуальные представители и нх товарные формы анализ 1/892 4/1006 безгазовое горение 4/575 граяулнров.адие 1/1187-1189 дозирование 3/1083-1086 зубные, см. Зубные пасты и порошки и кластерные частицы 2/796 как наполнители 3/87, 328-330 компактирование 4/139-141 краски, си. Порошковые краски огнетушащая способность 3/648, 649 [c.689]

    Порошковый гидрофобный материал, образуемый в результате обработки век, можно спрессовать, чтобы задать инертному наполнителю высокие геомеханические свойства. Можно достичь коэффициента проницаемости - [c.42]

    Применение порошкообразных композиций позволяет резко интенсифицировать процесс приготовления резиновых смесей на открытых вальцах. Производительность вальцов при этом возрастает в 5—6 раз более чем в 4,5 раза снижается стоимость изготовления, резиновых смесей. При обработке композиций на основе наполненного техническим углеродом порошкообразного каучука производительность вальцов с размерами валков 550X1500 мм может достигать 1—1,5 т/ч. Особенно заметны преимущества порошковой технологии при изготовлении жестких резиновых смесей на основе специальных каучуков с большим количеством технического углерода. Размер частиц порошкообразного каучука существенно влияет на скорость введения и диспергирования наполнителей и расход электроэнергии при обработке композиций на вальцах. [c.65]

    Стандартизация смолы заключается в разбавлении ее этило вым спиртом до получения раствора требуемой вязкости, что необ ходимо для обеспечения хорошей пропитки волокна. Стандартиза-тором служит аппарат, в котором получают смолу. Минеральные порошки — тальк и каолин — просеиваются через сито 1 и поступают в смеситель 2. Спиртовый раствор РС, олеиновая кислота и хлопковая целлюлоза (линт) смешиваются в смесителе 6, после чего масса опудривается смесью порошковых наполнителей. Сырок волокнит сушится на ленточной сушилке 7, откуда поступает в ба  [c.170]

    Премиксы — предварительно смешанные (англ. ргет1хед) пресс-композиции. Практически этот термин относится только к наполненным пресс-материалам на основе ненасыщенных полиэфиров. Помимо связующего, инициатора и волокнистого наполнителя (стекловолокна, асбеста и др.) в состав премикса вводят порошковый наполнитель (мел, каолин), смазку (стеараты цинка или магния) и, для окрашенных материалов, красители или пигмен- ты (лак бирюзовый, лак алый, двуокись титана, окись хрома). [c.212]

    Премиксы перерабатывают в изделия компрессионным прессованием при 130—150°С, давлении 2—10 МПа и выдержке 30— 60 с на 1 мм толщины изделия. По сравнению с обычной технологией получения изделий из стеклопластидов применение премиксов дает следующие преимущества 1) переработка премикса в изделия отделена от производства связующего, которое часто (например, для полиэфирных смол, растворенных в стироле) связано с применением летучих токсичных мономеров 2) усадка премиксов значительно меньше в связи с применением порошкового минерального наполнителя 3) при прессовании премиЙсов не происходит отжима связующего от стекловолокна. [c.212]

    Как следует из зарубежных и отечественных работ, при использовании порошковых каучуков с большой удельной поверхностью частиц (гранул, зерен и т п ) возникает возможность разделить в процессе смешения стадию образо1вания тесного межфазного контакта каучука с наполнителями (в том числе стадию втирания и внедрения, например, технического углерода в каучук), и стадию распределения и диспергирования ингредиентов в каучуке с высокой степенью однородности При этом в первой части технологического процесса образуется порошковая композиция с тесным межфазным контактом каучука с ингредиентами, а во второй — гомогенная смесь с хорошо диспергированными частицами ингредиентов [c.191]

    Реактивы образцы полнмеров (ПЭ, ПС, полнкапрамнд н др.), новолачная или резольная фенолформальдегидная смола, древесная мука, асбест или другне порошковые наполиители, слоистые наполнители бумага, кусочки ткани, картон, ткань и др., дибутилфталат, ацетон, силиконовое масло, хлорбензол. [c.148]

    Один из наиболее удобных методов рентгеновского флуоресцентного определения кадмия — метод внешнего стандарта с введением поправок на массовые коэффициенты поглощения. Теория метода изложена в работах [43, 44, 230, 231, 326, 328], его применение для определения кадмия — в [436, 662, 776]. Экспериментально показано, что предел обнаружения кадмия в растворах по линии Каг в оптимальных условиях насыщенного излучающего слоя составляет 5,4 мг/л [776]. Для этого применяли плоский кристалл-анализатор LiF толщиной 0,02 дюйма (0,508 мм), коллиматор Соллера и сцинтилляционпый счетчик подаваемое на трубку напряжение 57 кв. При использовании аналитической линии Lat предел обнаружения 10 мг d/л в этом случае для регистрации применяли пропорциональный счетчик с гелиевым наполнителем [776]. Предел обнаружения кадмия в порошковых пробах [c.135]

    Акустический импеданс демпфера выбирают в соответствии с желаемым демпфированием искателя. Самое высокое демпфирование получается в том случае, когда импедансы демпфера и преобразователя совпадают. Вся акустическая энергия от задней стенки преобразователя в таком случае переходит без отражения в демпфер (в тело демпфера). Демпфер должен по возможности полностью поглотить эту энергию, чтобы не создавалось мешающих отражений (эхо-импульсов). Для изготовления демпферов наиболее подходят смеси литых смол с порошковыми наполнителями. Выбором состава смеси и типа наполнителя можно варьировать импеданс в широких пределах. В качестве наполнителя часто используют тонко измельченный вольфрамовый порошок. Тем самым акустический импеданс можно варьировать от его значения для чистой литейной смолы [2 = 2,7-106 кг/(м2-с)] почти до его уровня для метаниобата свинца [2 = 20,5 10 кг/(м2-с)]. Поглощение обеспечивается выбираемой литейной смолой и примесями других мелкогранули-рованных материалов с высоким затуханием звука, например резинового порошка. Для рассеяния волн используют также опилки и воздушные поры. Однако такие средства, как. и нарушение плоского отражения при выполнении концевой  [c.226]


Смотреть страницы где упоминается термин Наполнители порошковые: [c.8]    [c.11]    [c.206]    [c.154]    [c.281]    [c.75]   
Промышленные полимерные композиционные материалы (1980) -- [ c.33 , c.69 , c.430 ]




ПОИСК





Смотрите так же термины и статьи:

Наполнители

Наполнители порошковых красок

Наполнители смачивающихся порошков



© 2025 chem21.info Реклама на сайте