Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентное состояние

    Исходя из строения атомов серы, селена и теллура, указать, какие валентные состояния и степени окисленности характерны для этих элементов. Каковы формулы их высших гидроксидов Ответ пояснить. [c.224]

    Рассмотреть особенности строения атомов элементов главной подгруппы третьей группы. Какие валентные состояния характерны для этих элементов Как изменяются их свойства с увеличением порядкового номера элемента  [c.244]


    Исходя из строения ато.ма водорода а) указать возможные валентные состояния и степени окисленности водорода б) описать строение молекулы Hj с позиций методов ВС и МО в) обосновать невозможность образования молекулы Нз. [c.219]

    Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Она зависит от многих факторов, в частности от валентного состояния элемента, типа соединения, в которое он входит, н пр. Тем не менее эго понятие полезно для качественного объяснения свойств химической связи и соединений. [c.37]

    Возбуждение атомов до нового валентного состояния требует затраты определенной энергии, которая компенсируется энергией, выделяемой при образовании связей. [c.67]

    Основному состоянию атома Ве отвечает электронная конфигурация 15 252. 3 химических соединениях бериллий двухвалентен, поэтому его валентному состоянию обычно сопоставляют конфигурацию 15 25 2р (о понятии валентного состояния см. далее). Тогда в образовании химических связей в молекуле ВеНа будут участвовать четыре валентных АО ф1 = 2 и Ф2 = 2рх АО атома бериллия и фз = 1 5а и ф< 1 АО атомов водорода.  [c.159]

    В некоторых окислительных процессах, катализируемых металлами, которые имеют несколько валентных состояний, переход электронов определяет образование промежуточных продуктов (ионного или радикального характера)  [c.129]

    Промежуточные валентные состояния в реакциях окисления — восстановления [c.508]

    Такой закон скорости невозможно объяснить, не предполагая существования нестабильных валентных состояний, таких, как Ге " или 8п " . Вейсс [115] предложил механизм с участием частиц 8п " , который хорошо согласуется с экспериментальными данными в значительном интервале  [c.508]

    Галоидирование. Катализаторы, наиболее часто применяющиеся для хлорирования металлическое железо, окись меди, бром, сера, иод, галоиды железа, сурьмы, олова, мышьяка, фосфора, алюминия и меди растительный и животный уголь, активированный боксит и другие глины. Большинство этих катализаторов является носителями галоидов. Так, Fe, Sb и Р в галоидных соединениях способны существовать в двух валентных состояниях в присутствии свободного хлора они поочередно присоединяют и отдают хлор в активной форме. Аналогично иод, бром и сера образуют с хлором неустойчивые соединения. Катализаторы броми-рования подобны катализаторам хлорирования. Для иодирования наилучшим ускорителем служит фосфор. Для проведения процесса фторирования катализатор не требуется. В присутствии кислорода галоидирование замедляется. [c.329]

    Промежуточные валентные состояния 509 [c.509]

    Хотя очень интересно установить, происходит ли в таких реакциях одновременный переход двух электронов, имеющийся в настоящее время кинетический материал не позволяет это сделать. (Одно время считали, что изменение валентного состояния происходит легко только в том случае, если перенос приводит к изменению валентного состояния только на одну единицу. Благодаря вероятности того, что большинство таких изменений происходит путем переноса атомов, это ограничение оказывается ненужным. В водных системах перенос атома О эквивалентен передаче двух зарядов, в то время как перенос радикала ОН или атома Н соответствует передаче единичного заряда. С этой точки зрения вода может служить очень хорошей средой для переноса заряда.) [c.509]


    В каждом случае скорость первого порядка по Ag, первого порядка по 8208" и нулевого порядка по восстанавливающейся частице. Предполагается, что эффективным катализатором окисления являются либо Ag , либо Ag " обе эти частицы присутствуют в растворе и находятся в равновесии с Ag " (2А 2" Ад + А ). Лимитирующей стадией в таком случае мояшо считать реакцию Ag" + ЗгО А + 2804" (или Ag + + 80 " Ь S0 ). Причины, обусловливающие высокие скорости данного пути и относительную медленность некатализированного пути, представляют большой интерес, но они пока не выяснены. В некоторых случаях промежуточное валентное состояние образуется из частиц катализатора, и тогда первоначальное валентное состояние катализатора может регенерироваться недостаточно быстро по сравнению с последующей реакцией промежуточного веи ества. [c.510]

    Действие окиси ванадия как катализатора основано на том, что в условиях реакции она может переходить из одной степени окисления в другую. Высший окисел окисляет углеводород, а сам при. этом восстанавливается затем он немедленно снова окисляется свободным кислородом воздуха. Необходимо давать избыток воздуха, чтобы равновесие было сдвинуто в сторону окисла более высокого валентного состояния, [c.10]

    Результаты исследований указывают на связь между валентными состояниями марганца (Мп +, Мп +, Мп +) в его различных соедине- [c.151]

    Каталитическое действие металлов, имеющих несколько валентных состояний, можно объяснить переходом электронов  [c.154]

    Механизм окисления в присутствии катализаторов —металлов изучен недостаточно. Действие металлов можно объяснить по-разному образованием осколков молекул, обладающих свойствами свободных радикалов перераспределением электронов между гидроперекисями и металлом в низшем валентном состоянии или, наконец, образованием некоторых соединений с гидроперекисями, имеющих кислый характер. [c.178]

    Завершая рассказ о методе ВС, остановимся на понятиях валентности и валентного состояния атома в рамках этого метода. [c.170]

    Но перевод атома в валентное состояние не сводится только к его возбуждению (промотированию). Следует учесть также неопределенность в ориентации спинов неспаренных электронов, участвующих в образовании химических связей. А если говорить точнее, то необходимо принять во внимание, что волновая функция валентного состояния атома не является собственной функцией операторов квадрата полного спина атома (5 ) и его проекции на ось квантования 2 Зг) — равно как она не является и собственной функцией операторов квадрата полного орбитального момента количества движения ( ) и его проекции [c.172]

    Таким образом, валентное состояние атома не есть какое-либо его стационарное состояние (основное или возбужденное), и потому оно не будет спектроскопически наблюдаемым. [c.172]

    Теперь о нереальности валентного состояния. Оно нереально лишь в том смысле, что не является, как уже отмечалось, спектроскопически наблюдаемым. Но оно отражает вполне реальное физическое явление — перераспределение электронной плотности при переходе от изолированных атомов к атомам в молекуле , сопровождаемое расширением валентных возможностей атомов. [c.174]

    Для характеристики валентного состояния атома и исследования анатомии химической связи нужно научиться распределять электронную плотность мо лекулы по образующим ее атомам (если уж мы допускаем, что атом хотя бы отчасти сохраняет в молекуле свою индивидуальность). Задача эта, вообще говоря, не простая — она осложняется наличием перекрывания АО в молекуле и только в ортогональном атомном базисе имеет однозначное решение. В этом случае условие (93) принимает вид  [c.219]

    Какое валентное состояние кобальта более устойчиво и каково влияние лигандов на устойчивость  [c.95]

    Если электрохимический акт ограничивает скорость всего электродного процесса, то наблюдающееся смещение потенциала под током называется часто либо перенапряокением замедленного разряда (замедленной ионизации), либо, особенно в последнее время, перенапряжением переноса заряда. Однако сущность собственно электрохимической стадии не сводится только к изменению валентного состояния частиц (акты разряда и ионизации) или только к переносу заряда через границу раздела электрод — электролит. Приобретение (или потеря) частицей электрона ириводит одновременно к изменению ее физико-химического и энергетического состояния. Так, например, в ходе реакции [c.345]

    В разном валентном состоянии атомов РЬ в РЬд04 можно легко убедиться П5И действии разбавленной HNOg протекает обменная реакция и образуются производные РЬ(И) и Pb(IV)  [c.427]

    Мы привели здесь это курьезное замечание потому, что подобное мнение среди химиков стало почему-то распространенным. Валентное состояние атома — не просто некий нуль отсчета . Оно было введено в теорию ВС с целью распространить ее на случай, когда число неспаренных электронов в основном состоянии атома меньше числа образуемых им двухэлектронных двухцентровых связей. Вместе с тем, это понятие используется и в методе молекулярных орбиталей, в рамках которого оно обычно понимается как эффективная электронная конфигурация с дробными заселенностями АО и эффективными зарядами, что позволяет учесть как промотирование электронов с одних АО на другие, так и их перенос от атома к атому при образовании химических связей (см. приведенный выше пример для ряда С—СО— —СО2). И используется это понятие в обоих методах не только для построения качественной теории, но и при квантовомеханических расчетах .  [c.174]


    Примером таких реакций может служить изотопный обмен между двумя ионами, находящимися в различном валентном состоянии такие взаимодействия не приводят к осуществлению какого-либо химического превращения. Очень тщательно была изучена система Ге " — Ге " в водном растворе. Реакция обычно проводится в присутствии НСЮ4, добавляемой для поддержания постоянной ионной силы и постоянного pH и предотвращения образования комплексов [96, 97]. Обмен идет довольно быстро, и, [c.504]

    Подобно тому как во многих случаях возникают свободные радикалы, так для неорганических ионов должны существовать промежуточные валентные состояния. Многие результаты кинетических исследований окислительно-восстановительных реакций наталкивают на предиоложение о существовании таких нестабильных валентных состояний неорганических ионов. Один из классических примеров этого типа реакций дает медленная реакция ЗРе " + + 8п . Реакция идет очень медленно в растворе [c.508]

    Промежуточные валентные состояния зачастую играют важную роль катализаторов в окислительно-восстановительных реакциях. Так, в разбавленных растворах кислот Fe " очень медленно окисляет 1 с образованием Fe и Ij [114в, 117]. Точно так же реакция между СггО (или НСгО ) и Г в кислых растворах идет чрезвычайно медленно [118]. Однако в смеси Fe " , Г и СгаО окисление Г в 1 идет очень быстро [119] и сопровождается окислением Fe " до Fe . Превращение Сг в этой системе, несомненно, идет через промежуточное четырех- или пятивалентное состояние имеющиеся по этому вопросу работы отдают предпочтение последнему. [c.509]

    Для таких реакций фактор индукции 1Г определяется как число эквивалентов восстановителя, окисленных па одип эквивалент восстаповлеппого индуктора (в данном случае Ге +). В сущности восстанавливающий агент и индуктор конкурируют друг с другом в реакции дальнейшего восстановления промежуточного валентного состояния окисляющего агента. [c.510]

    Галоидирование и дегалоидирование. Активные катализаторы имеют более чем одно валентное состояние и способны свободно пр1исоединять и отдавать галоиды. Катализаторы реакции данного типа в газовой фазе—это галоиды серебра и меди, осажденные на носителйх, таких как силикагель катализатором реакций в жидкой фазе служит, как правило, хлорное железо. [c.313]

    В большинстве случаев адипиновую кислоту получают в две стадии. Первая — окисление циклогексана в циклогексанон и цик-логексанол воздухом (или смесью кислорода и азота, обогашенной кислородом) в газо-жидкостной системе при 3—5 ат и 120—-130 °С в присутствии растворимых нафтенатов и стеаратов металлов с несколькими валентными состояниями (Со, Мп, Си, Ре, Сг). Реакцию можно проводить также в присутствии органических перекисей или альдегидов и кетонов в качестве промоторов. Вторая стадия — окисление смеси циклогексанол — циклогексанон — осуществляется в промышленности по непрерывной схеме 50%-ной азотной кислотой в присутствии твердых катализаторов (медь, ванадий) при 80 °С и небольшом давлении. И в этом случае можно проводить окисление воздухом, но в иных, чем на первой ступени, условиях. [c.159]

    В большинстве случаев галоидирование ускоряется под действием светового облучения (длина волны 3000—5000 А) или высокой температуры (в присутствии катализатора или без него). В качестве катализаторов обычно применяют галоидные соединения металлов, имеющих два валентных состояния, способные отдавать атомы галоидов при переходе из одного валентного состояния в другое, — P I5, P I3, Fe lg. Используют также хлористую сурьму или хлористый марганец, а также неметаллические катализаторы — иод, бром или фосфор. [c.259]

    В итоге, переход атома углерода в валентное состояние можно условно представить следующей схемой, учитывающей как энергию возбуждения атома ( возб), так и энергию, связанную с переориентацией спинов Е сп) I [c.172]

    По-видимому, фториды металлов, имеющих несколько валентных состояний, вступают в реакции, сходные с теми, в которые вступает 0F3  [c.273]

    Каталитическая активность металлов переменной валентности в процессах окисления и старения синтетических каучуков зависит от следующих факторов природы металла переменной валентности валентного состояния металла химической структуры каучука содержания металла переменной валентности природы ан-тиокспданта, применяемого для стабилизации каучука наличия в каучуке веществ, способных связывать металлы переменной валентности в соединения (комплексы или хелаты), которые являются неактивными в процессах окисления или других превращениях каучуков. [c.629]

    Из таких закономерностей укажем на положение, выдвинутое В. А. Киреевым, согласно которому энтропия образования кристаллического вещества из одноатомных газов (ДS ) зависите первую очередь от числа атомов в молекуле вещества и лишь в меньшей степени от структуры и индивидуальных особенностей веществ. При сравнении энтропий образования из атомов для однотипных веществ (в которых соответствующие атомы или ионы находятся в одинаковых валентных состояниях, например ВаСгО, и FeSO ) величины ASa еще более близки. Особенно близки эти величины для таких веществ, как SrSO и BaSO . [c.325]

    Исходя из строения атомов галогенов, ука-затг>, какие валентные состояния ха[)актерны для фтора, хлора, брома и иода. Какие степени окисленности проявляют галогены в своих соединениях  [c.221]

    Как видим, вклад Есп в суммарную затрату энергии на переход атома в валентное состояние весьма заметен и соизмерим с возв. Кроме того, орбитали атома в молекуле могут быть так или инаЧе гибриди-зованы, чему также соответствует определенная энергия Ягибр. Однако ее вклад как правило не превышает 20—60 кДж/моль, и им часто пренебрегают. [c.173]

    Энергетические затраты на перевод атома в валентное состояние ( вал) компенсируются энергией, выделяющейся при образовании химических связей. Разумеется, если Еьал очень велика, то она не ыожет окупиться образованием дополнительных связей. Так, у атомов Си, Ag и Ли вал отвечающая переходу (п — - -(п — 1) пз пр , довольно значитель- [c.173]

    Детально этот вопрос изложен в главах 3 и 4 книги О. П. Чаркин. Стабильность и структура газообразных неорганических молекул, радикалов и ионов. М. Наука, 1980. Из этой книги, между прочим, ясно видно, что понятие валентного состояния отнюдь не устарело, [c.174]

    Почему кислород способен образовывать соединения с элементами в их максимальном валентном состоянии (0s04, ХеО ), а сера такой способностью не обладает  [c.154]


Смотреть страницы где упоминается термин Валентное состояние: [c.160]    [c.510]    [c.511]    [c.313]    [c.362]    [c.172]    [c.174]   
Смотреть главы в:

Валентность -> Валентное состояние


Квантовая механика и квантовая химия (2001) -- [ c.338 ]

Химическая связь (0) -- [ c.298 ]

Органическая химия (1974) -- [ c.9 ]

Основы неорганической химии (1979) -- [ c.90 , c.91 ]

Справочник полимеров Издание 3 (1966) -- [ c.559 ]

Органическая химия (1956) -- [ c.25 ]

Органическая химия (1976) -- [ c.0 ]

Теория молекулярных орбиталей в органической химии (1972) -- [ c.457 ]

Химическая связь (1980) -- [ c.298 ]

Квантовая механика и квантовая химия (2001) -- [ c.338 ]




ПОИСК







© 2025 chem21.info Реклама на сайте