Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промотирование

    Естественно, катализаторы бифункционального катализа до — лжны содержать в своем составе одновременно оба типа центров — и металлические (м.ц.), и кислотные (к.ц.). Так, полиметаллический алюмоплатиновый катализатор риформинга представляет собой пла — тину, модифицированную редкоземельными металлами (например, Яе), на носителе — окиси алюминия, промотированном кислотой (хлором). В катализаторе гидрокрекинга, например, алюмокобаль— тмолибденцеолитовом (или алюмоникельмолибденцеолитовом), Со + Мо или Ы1+Мо осуществляют гидрирующе —дегидрирующие функции, а цеолит является кислотным компонентом. В качестве примера приведем возможные схемы протекания подобных реакций. [c.95]


    Третья возможность основана на избирательном промотировании каталитических центров целевой реакции или отравления центров реакции уплотнения, т. е. воздействии на определяющую стадию реакции. В качестве примера может служить промотирование алюмоплатинового катализатора дегидрирования парафиновых углеводородов. Введение в состав катализатора щелочных металлов приводит к снижению кислотности алюмоплатинового катализатора и обуславливает подавление в процессе дегидрирования парафиновых углеводородов реакций крекинга, изомеризации и коксообразования, идущих с участием кислотных центров, что, однако, не приводит к сохранению стабильности из-за одновременного уменьшения поверхности платины [63]. [c.41]

    Новый этап начался в 1949 г., когда был разработан процесс каталитического риформинга с широким применением бифункциональных катализаторов. Это послужило толчком для разработки процессов изомеризации парафиновых углеводородов при давлении водорода в паровой фазе, температурах 350-500 °С на окисных, сульфидных катализаторах и металлах VIH группы, нанесенных на носители, обладающие кислотными свойствами — оксид алюминия, промотированный фтором, и алюмосиликаты [5—9]. [c.5]

    При осуществлении изомеризации парафиновых углеводородов на промышленных алюмоплатиновых катализаторах, промотированных фтором и хлором, металлцеолитных катализаторах, а также сверхкислотах, особенности кинетики и механизма реакции обусловлены механизмом образования промежуточных соединений. [c.14]

    В зависимости от природы носителя и способа его приготовления различается механизм действия и активность катализатора в реакции изомеризации парафиновых углеводородов. Алюмоплатиновые катализаторы, промотированные фтором, позволяют осуществлять процесс при 360-420 °С и называются высокотемпературными металлцеолитные, на которых процесс идет при 260-400 °С, в зависимости от типа применяемого цеолита, называются среднетемпературными на алюмоплатиновых катализаторах, промотированных хлором, температура процесса изомеризации составляет 100-200 °С, такие катализаторы принято называть низкотемпературными. [c.43]

    В техническом катализе (например, в процессах каталитического риформинга и гидрокрекинга) нашли широкое применение бифункциональные катализаторы, состоящие из носителя кислотного типа (окись алюминия, алюмосиликаты, промотированные галоидами, цеолитом и др.) с нанесенным на него ме таллом — катализатором гомолитических реакций (Pt, Pd, Со, Ni, Mo и др.). [c.81]

    Еще в 1933 г. [44] было известно, что при обработке -гексана хлористым алюминием, активированным водой, образуются более низкокипящие углеводороды, которые, по-видимому, содержат некоторое количество 2- и 3-метилпентанов. Последующими работами различных исследователей было окончательно установлено, что промотированные галоидные соли алюминия способны приводить реакцию в равновесное состояние при участии всех пяти возможных изомеров гексана. [c.30]


    Наибольшее распространение в нефтепереработке получили низко- и высокотемпературные процессы изомеризации н-парафинов - - Сц на основе алюмоплатиновых катализаторов, промотирован — ны хлором и фтором. [c.199]

    Распространенной формой участия металлического катализатора в окислении углеводородов является промотирование им разложения гидропероксида с образованием свободных радикалов  [c.78]

    Катализатор Филлипс Ко приготовлялся из боксита, пропитанного 5%-ным раствором гидроокиси бария, активность его, как предполагается, связана с каталитическими свойствами содержащегося в боксите железа. В связи с тем, что при использовании этого катализатора предельные выходы бутадиена не превышали 50—37%, он был заменен описанным ниже промотированным катализатором из окиси железа. [c.202]

    Изучено также влияние воды на реакцию изомеризации н-бутана, содержащего бромистый алюминий [81]. Эти опыты нельзя сравнивать с опытами, описанными выше, так как образующийся бромистый водород не удалялся из зоны реакции. Оказалось, что бромистый алюминий, промотированный водой, несмотря на присутствие свободного бромистого водорода, является менее активным катализатором, чем катализатор из бромистого алюминия, обработанного водой с последующей откачкой выделившегося бромистого водорода. И в этом случае продукт, образовавшийся в результате прибавления 6 молей воды к i молю бромистого алюминия, был каталитически неактивен для изомеризации -бутана. [c.20]

    Изопропенилциклопропан гидрогенизируется в присутствии хромита меди, промотированного барием  [c.254]

    Обычно реакция алкилирования осуществляется в,виде периодического процесса. В качестве катализатора используется хлористый алюминий (1,5—4,0%) в виде комплекса с углеводородом, промотированный НС1. Время реакции нри температуре 40° составляет около 1 часа. Про- [c.511]

    Представляют интерес результаты исследования методом ДТА алюмоплатиновых катализаторов, промотированных элементами IV группы. Установлено, что введение элементов IV группы в алюмоплатиновый катализатор не влияет на положение максимума при 400—480 °С, но приводит к исчезновению максимума при 350—400 °С. При отсутствии платины промоторы не оказывают сушественного влияния на температуру горения кокса. Полученные данные были подтверждены определением дисперсности платины в свежих и закоксованных катализаторах. Все это свидетельствует о предотвращении блокировки поверхности платины коксом в присутствии элементов IV группы. [c.40]

    Кинетика изомеризации парафиновых углеводородов. Во всех работах, посвященных кинетике изомеризации парафиновых углеводородов на бифункциональных катализаторах [19, 21, 24, 27-36], за исключением [11], стадией, лимитирующей общую скорость реакции изомеризации, считается алкильная перегруппировка карбкатионов. Эта точка зрения подтверждается данными о селективном действии различных промоторов и ядов на металлические и кислотные участки катализатора [19, 30]. Серии опытов по влиянию фтора, натрия, железа и платины на активность алюмоплатиновых катализаторов в реакции изомеризации к-гексана проводились при 400 °С, давлении 4 МПа и изменении объемной скорости подачи и-гексана от 1,0 до 4,0 ч [30]. Опыты на платинированном оксиде алюминия, промотированном различными количествами фтора — от О до 15% (рис. 1.7), показали, что по мере увеличения количества фтора в катализаторе до 5% наблюдался значительный рост его изомеризу-ющей активности поскольку удельная поверхность катализатора не подвергалась заметным изменениям, рост каталитической активности объясняется изменением химических свойств активной поверхности, а именно усилением кислотности. [c.17]

    Кинетические закономерности реакции изомеризации н-пентана на алюмоплатиновом катализаторе,промотированном фтором, были изучены в связи с разработкой технологии процесса [38]. Была установлена зависимость выхода изопентана от мольного отношения водород н-пен-тан, рабочего давления, температуры и объемной скорости подачи н-пентана. Было изучено также влияние парциальных давлений н-пентана и водорода на скорость протекания реакции. Состав исходного сырья и продуктов реакции определялся с помощью газожидкостной хроматографии. Реакция протекала с высокой селективностью выход продуктов распада не превышал 1%. Диаметр зерна катализатора составлял 1,5 мм. Для описания полученных закономерностей бьшо использовано уравнение для случая мономолекулярной обратимой гетерогенной реакции, протекающей в струе [39]. Преобразование уравнения дает следующее выражение для константы скорости реакции  [c.20]

    При изучении реакции изомеризации н-пентана проточно-циркуляционным методом на алюмоплатиновом катализаторе, промотированном фтором, наблюдался обратный кинетический изотопный эффект при замене водорода на дейтерий [27]. Скорость реакции характеризовалась количественным порядком по водороду, равным 0,5, причем скорость обмена дейтерия в пентане в этих условиях выше скорости изомеризации. [c.26]

    На алюмоплатиновом катализаторе, промотированном фтором, реакция изомеризации парафиновых углеводородов не происходит в отсутствие водорода если катализатор модифицирован хлором, реакция в начальный период протекает и в отсутствие водорода (то же явление имеет место и на фторидах металлов V и VI групп, активированных фтороводородом), но с течением времени ее скорость постепенно уменьшается. [c.35]


    Процесс каталитического риформинга осуществляют на бифункциональных катализаторах, сочетающих кислотную и гидрирующую — дегидрирующую функции. Гомолитические реакции гид — рнрования и дегидрирования протекают на металлических центрах njvaxHHbi или платины, промотированной добавками рения, иридия, OjvOBa, галлия, германия идр., тонкодиспергированных на носителе. [c.180]

    Общепринятая теория бифункциональной изомеризации предполагает, что под действием металлического компонента происходит дегидрирование парафинов с образованием олефинов, а олефины изомеризуются на кислотных центрах[67]. Каталитическая система металл - носитель типа алюмоплатинового катализатора благодаря своей бифункциональной природе позволяет, в зависимости от типа реакции, применять различные способы промотирования, направленные на усиление тех или иных функций этой системы. [c.42]

    Результаты, достигаемые при промотировании алюмоплатиновых катализаторов изомеризации парафиновых углеводородов путем введения [c.42]

    В последнее время в качестве перспективных катализаторов изомеризации парафиновых углеводородов рассматриваются каталитические системы - фториды металлов V и VI групп периодической системы, промотированные фтороводородом. На этих катализаторах реакция изомеризации протекает при 20-50 °С [69, 70]. [c.43]

    ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ, ПРОМОТИРОВАННОГО ФТОРОМ [c.43]

    Синтез углеводородов по Фишеру — Тропшу основывается на каталитическом гидрировании окислов углерода, предпочтительно окиси углерода, на, ко1бальтовых катализаторах, промотированных окисью [c.16]

    В процессе низкотемпературной изомеризации на алюмоплатиновом катализаторе, промотированном хлором, в присутствии нафтенов скорость реакции снижается. В случае осуществления реакции изомеризации н-гексана в жидкой фазе на сверхкислотных Катализаторах влияние нафтеновых углеводородов специфично [124]. Как следует из рассмотрения результатов, представленных на рис. 1.17, циклогексан оказывает промотирующее действие на скорость изомеризации н-гексана на НР ЗЬР в противоположность этому реакции крекинга и диспропорционирования подавляются Влияние циклогексана на скорость реакции изомеризации н-парафина и побочных реакций уменьшается по мере увеличения [c.32]

    По данным большого числа исследователей основная роль в реакциях гидрообессеривания в алюмокобальтмолибденовом катализаторе принадлежит активному комплексу М082, промотированному активным кобальтом. В каком виде входет кобальт в активный комплекс и какова его роль в активировании и каталитическом процессе пока однозначно не выяснено. Утверждается [69], что кобальт оказывает существенное влияние на способ взаимодействия соединений молибдена с поверхностными гидроксилами оксида алюминия. В присутствии кобальта происходит реакция ОН-групп с молибденсодержащими соединениями, приводящая к появлению молибдена в специфических центрах иа поверхности оксида алюминия. [c.96]

    На рис. 1У-5 приведена технологическая схема установки изомеризации фракции н. к. —62 °С, содержащей 27,5 % (масс.) изопентана, 44 % (масс.) н-пентана и 26,2 % (масс.) изогексанов, на алюмо-платиновом катализаторе, промотированном фтором. [c.44]

    Акти]июсть и стабильность промотированных щелочью железных катализаторов при работе ниже 7 ат можно повысить путем предварительной обработки окисью углерода с образованием карбидов железа (Хэгга и гексагонального) [2, 27g]. Благоприятный эффект предварительного карбр1Дйрования железных катализаторов, по-видимому, непосредственно связан со значительным уменьшением скорости окисления FejG водяными парами по сравнению со скоростью окисления Fe. При проведении синтеза под давлением выше 7 ат ьсе карбиды (Хэгга, гексагональный и цементит) окисляются быстрее восстановленного железа. Этот процесс сопровождается быстрым падением активности (см. рис. 2). Предварительное карбидирование кобальтовых катализаторов резко снижает их активность. Кобальтовые катализаторы по сравнению с не-карбидированными железными очень медленно окисляются водяными парами в условиях синтеза. [c.522]

    Описание процесса Гудри приведено в разделе, посвященном производству моноолефинов. Принимая во внимание то обстоятельство, что завод в Эль-Сегундо в настоящее время производит главным образом бутены, превращаемые затем в бутадиен посредством процесса Джерси, можно считать процесс Гудри наиболее пригодным для получения бутенов. Принятый на заводе двухступенчатый процесс производства бута-диенов аналогичен процессу, применяемому фирмой Филлипс Петролеум Ко . Первая стадия процесса фирмы Филлипс Ко заключается в дегидрировании бутанов над алюмохромовым катализатором до бутонов, вторая — в дегидрировании разбавленных водяным паром бутенов до бутадиена. Первоначально вторая стадия проводилась на промотирован-ном бокситовом катализаторе, а затем на более эффективном катализаторе, описанном дальше. Проектная и действительная производительности наиболее крупных заводов по производству бутадиенов путем дегидрирования приведены в табл. 12. [c.200]

    Когда в 1940 г. американскими промышленными лабораториями были начаты интенсивные исследования процессов дегидрирования бутена, оказалось, что ни один из ранее предложенных для работы в присутствии водяного пара катализаторов не дал достаточно удовлетворп-тельных рсзультатот. Ко времени завершения программы производства синтетического каучука фирмой Филлипс Петролеум Ко был разработан промотированный бокситовый катализатор, а фирмой Стандард Ойл Давэлопмент Ко — промотированный железный катализатор. [c.202]

    Рилли детально рассмотрел всо преимущества и недостатки пикеле-вого катализатора, однако пока еще трудно решить, заменит ли этот катализатор железные катализаторы, промотированные KjO. Преимуществом никелевого катализатора является ого способность давать высокие выходы бутадиона с наименьшими потерями бутонов, что особенно важно в случао уменьшения производства бутенов или при увеличении их стоимости. Однако этот катализатор обладает меньшей механической прочностью и, кромо того, иногда наблюдаются резкие нарушения в ого работе, сонровоагдаемыо образованием большого количества кокса и газа и разрушением таблеток катализатора. Кроме того, перевод заводских установок на катализатор Дау потребовал бы дополнительных финансовых затрат. В настоящее время нет возможности точно предсказать характер ближайшего развития нефтехимической промышленности в отношении [c.203]

    В результате крекинга парафиновых углеводородов в присутствии хлористого алюминия, промотированного хлористым водородом, образуется смесь продуктов большего и меньшего молекулярных весов, чем исходный парафин. Такая реакция, известная как автодеструктивное алкилирование [24], предполагает каталитический крекинг, сопровожда-юш,ийся алкилированием путем присоединения третичного алкильного иона карбония к промежуточному олефину. [c.237]

    Исключение, возможно, составляет каталитическое окисление нормального бутана до малеинового ангидрида над катализаторами, состоящими из онределенной меси окислов металлов. М. Дж. П. Гартинг (США патент 2625519 13 января 1953) получил 60%-ный выход малеинового ангидрида нри окислении нормального бутана в концентрации 1—5% воздухом, промотированным молибденово-кобальтовым окис-яым катализатором. [c.320]

    Влияние воды. Промотирование водой реакции изомеризации предельных углеводородов при применении в качестве катализаторов бромистого пли хлористого алюминия было установлено ранее [43]. Сначала думали, что действие воды состоит просто в образовании галоидводорода, однако позже было показано, что вода образует гидроксиалюминийгалоиды, которые сами являются активными катализаторами. При применении слишком большого количества воды каталитическая активность уничтожается. [c.19]

    Реакция хлористого алюминия с водой до некоторой степени сходна с реакцией бромистого алюминия. Так, из 1 моля хлористого алюминия 1 молем воды было выделено больше хлористого водорода, чем 2 молями [81]. Катализатор, полученный из хлористого алюминия действием на него воды, был менее активен, чем катализатор из бромистого алюминия, и поэтому опыты по изомеризации проводилисьпри80—100. В отличие от хлористого алюминия катализатор, полученный действием воды на хлористый алюминий, не требует присутствия олефинов или хлористого водорода для промотирования реакции изомеризации к-бутана. [c.20]

    Утверждение, что парафиновые углеводороды являются соединениями врагнт а или слишком малоактивными , было твердо и окончательно опровергнуто после того, как Ипатьев [20] и его сотрудники показали, что конденсация изопарафинов и олефинов идет даже при обычной температуре в присутствии кислотных катализаторов. В июне 1932 г. Ипатьев и Пайне показали, что хлористый алюминий, промотированный хлористым водородом, катализирует алкилирование гексдна этиленом. Позднее Гросс исследовал другие парафиновые углеводороды и катализаторы, в частности такой катализатор, как фтористый бор. Аналогичное алкилирование циклопарафинов изучал Комаревский. [c.304]

    Метилциклопентан. Продукт реакции метилциклопентана с пропиленом при —42° в присутствии бромистого алюминия, промотированного бромистым водородом, состоял главным образом из смеси алкилированных циклогексанов СдНхз и углеводородов [35]. Первая часть в основ- [c.336]

    Возможность изомеризации парафиновых углеводородов на хлориде алюминия была впервые обнаружена в 1933 г. К. Ненитцеску и А. Дра-ганом. В 1935 г. Б.Л. Молдавский открыл в93можность промотирования реакции изомеризации хлористым водородом, что предопределило практическое применение этой реакции [1, с. 512-528]. [c.5]

    Влияние нафтенов на активность катализаторов в реакции изомеризации парафинов различается в зависимости от природы катализатора и условий осуществления реакции. В процессе высокотемпературной изомеризации на алюмоплатиновом катализаторе, промотированном фтором, нафтены, пока их массовая доля не превышает 15%, практически не ока-зьшают влияния на глубину изомеризации парафинового углеводорода. [c.31]

    В случае осуществления реакции на алюмоплатиновых катализаторах, промотированнь.х фтором и хлором, и на металлцеолитных катализаторах скорости реакций гидрокрекинга и диспропорционирования имеют максимальное значение в отсутствие водорода, постепенно уменьшаются [c.35]


Смотреть страницы где упоминается термин Промотирование: [c.164]    [c.177]    [c.182]    [c.199]    [c.177]    [c.203]    [c.208]    [c.313]    [c.4]    [c.15]    [c.34]   
Общая химия (1984) -- [ c.95 ]

Общая и неорганическая химия 1997 (1997) -- [ c.71 ]

Химия (2001) -- [ c.55 , c.62 ]

Общая и неорганическая химия (2004) -- [ c.71 ]

Основы синтеза промежуточных продуктов и красителей (1950) -- [ c.813 ]

Основы синтеза промежуточных продуктов и красителей (1950) -- [ c.813 ]

Теория молекулярных орбиталей в органической химии (1972) -- [ c.178 , c.183 , c.535 ]

Инженерная химия гетерогенного катализа (1971) -- [ c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция и катализ на промотированных окислах

Алкилирование бензола пропиленом в присутствии алюмосиликата, промотированного

Алюмохромовый катализатор промотирование

Анализ энергий промотирования

Гомогенное промотирование процесса

Другие каталитические исследования с промотированными окислами

Железо, адсорбция газов промотирование

Защита и промотирование

Изомеризация на окиси алюминия, промотированной кислотами и щелочами

Изомеризация на силикагеле, промотированном разными добавками

Изучение промотирования и отравления катализаторов

Катализатор промотированные

Катализаторы промотирование

Кеезома промотирования

Кобальтовые катализаторы реакций на основе окиси углерода, водорода и олефинов и их промотирование окислами металлов. — Я. Т. Эйдус Буланова

Конкуренция между энергией промотирования и кинетической интерференционной энергией

Медные промотированные катализаторы (на носителях и сплавные)

Медь, гидроокись промотирование

Металлов ионы промотирование аминолиза тиоэфиров

Метан промотирование, гибридизация и локализованные орбитали

Метанол, окисление промотированное иминоксилами

Механизм каталитического действия промотированных ванадиевых катализаторов

Механизм промотирования алюмосиликатов и цеолитов

Механизм реакции на промотированном катализаторе

Механохимическое промотирование катализаторов

Молибден, окись промотирование

Никель промотирование

Отравление катализаторов промотирование

Отравление, промотирование и модифицирование катализатоКомпенсационный эффект

ПРОМОТИРОВАННЫЕ УГЛЕРОДНЫЕ ЭЛЕКТРОДЫ Электрокатализ

Полимеризация этилена на двойных промотированных катализаторах

Промотирование алюмосиликатов газообразными галогеноводородами

Промотирование валентного состояния

Промотирование и отравление никелевых катализаторов при гидрировании в жидкой фазе.— Д. В. Сокольский

Промотирование канцерогенеза

Промотирование различных эластомеров

Промотирование серной кислоты

Промотирование цеолитов

Промотирование электронов

Промотирование электронов алюминий металлический

Промотирование электронов втором периоде

Промотирование электронов разность энергий s уровней

Промотированная окись серебра

Промотированные и смешанные катализаторы. Носители

Промотированные катализаторы в защитных противогазах

Промотированные катализаторы, приготовленные вне реактора

Промотированные щелочами катализаторы на основе окиси цинка

Промотированные щелочами катализаторы на основе окиси цинка и окиси хрома

Промотированные щелочами катализаторы, содержащие медь, окись цинка и окись хрома

Промотированные щелочами катализаторы, содержащие окислы цинка, марганца и хрома

Промотированные щелочными металлами катализаторы, содержащие медь и окислы (или соли) цинка, хрома, марганца, кальция, свинца, алюминия, тория

Промотированный оксид алюминия, не содержащий платины и палладия

Разложение промотирование катализаторов

Серебро на носителях промотирование

Силикагель промотирование

Состав продуктов промотированные СаО и MgO

Сплавные промотированные никелевые катализаторы

Стабилизация промотирование

Степень промотирования

Структурное промотирование

Структурообразующее промотирование

Термостабильность катализаторов промотированных

Углеродные электроды, промотированные оксидами металлов

Углеродные электроды, промотированные органическими комплексами

Условия промотирования

Фридель промотирование ионизации

Химическое промотирование смесей из бутадиен-стирольного и натурального каучуков

Химотрипсин промотирование голубым Эванс

Цинк, окись промотированная

Цинк, окись промотированная адсорбция

Цинк, окись промотированная каталитические свойства

Цинк, окись промотированная работа выхода

Цинк, окись промотированная электропроводность

Щелочные формы фожазитов. Активность и промотирование в реакциях карбоний-ионного типа

Электронная теория промотирования и отравления ионных катализаторов.— Волькенштейн

Энергии возбуждения (промотирования) и валентные состояния

Энергия активации промотирования

Энергия промотирования

гибридные орбитали промотирование электрона

молекулярная ассоциация и промотирование

промотирование и электронная

промотирование и электронная структура

электронное строение и промотирование



© 2025 chem21.info Реклама на сайте