Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вариационные методы оптимизации процессов

    В простейших случаях, когда целевая функция задана аналитически, используют классические методы нахождения экстремума методами дифференциального исчисления. При наличии ограничений типа равенств, наложенных на независимые переменные, используют метод множителей Лагранжа. В более сложных случаях, когда критерий оптимальности представлен в виде функционалов, используют методы вариационного исчисления-, при оптимизации процессов, описываемых системами дифференциальных уравнений, применяют принцип максимума Понтрягина. Используют также динамическое, линейное программирование и другие методы оптимизации. [c.38]


    Предлагаемая читателю монография представляет восьмую книгу в единой серии работ авторов под общим названием Системный анализ процессов химической технологии , выпускаемых издательством Наука с 1976 г. Семь предыдущих монографий 1. Основы стратегии, 1976 г. 2. Топологический принцип формализации, 1979 г. 3. Статистические методы идентификации объектов химической технологии, 1982 г. 4. Процессы массовой кристаллизации из растворов и газовой фазы, 1983 г. 5. Процессы измельчения и смешения сыпучих материалов, 1985 г. 6. Применение метода нечетких множеств, 1986 г. 7. Энтропийный и вариационный методы неравновесной термодинамики в задачах анализа химических и биохимических систем, 1987 г.) посвящены отдельным вопросам теории системного анализа химико-технологических процессов и его практического применения для решения конкретных задач моделирования, расчета, проектирования и оптимизации технологических процессов, протекающих в гетерогенных средах в условиях сложной неоднородной гидродинамической обстановки. [c.3]

    Разработана теория оптимального управления каталитическими процессами на основе принципа максимума Понтрягина и прямых вариационных методов. Для каталитических реакций с падающей активностью катализатора проведено качественное исследование оптимальных управлений, разработаны эффективные численные алгоритмы оптимизации и решен ряд промышленно важных задач. [c.4]

    В книге в доступной форме изложены основы методов оптимизации химических производств (классический анализ, вариационное исчисление, принцип максимума, динамическое, линейное, нелинейное и геометрическое программирование). Сформулированы общие положения, касающиеся выбора критериев оптимальности химико-технологических процессов, и приведены их математические модели. Рассмотрены задачи оптимизации конкретных процессов. Второе издание (первое издание выпущено в 1969 г.) дополнено изложением основ геометрического программирования, а также примерами, иллюстрирующими практическую реализацию методов нелинейного программирования. [c.4]

    Методы вариационного исчисления ( см. главу V) обычно используют для решения задач, в которых критерии оптимальности представляются в виде функционалов (I, 27) и решениями которых служат неизвестные функции. Такие задачи возникают обычно при статической оптимизации процессов с распределенными параметрами или в задачах динамической оптимизации. [c.32]


    В девятой главе рассмотрены методы оптимизации, предлагаемые для расчета ступенчатых и непрерывных систем. Здесь под ступенчатыми понимаются многостадийные процессы, происходящие, например, в последовательности реакторов и т. п. Для рещения задачи оптимизации таких систем предлагаются методы вариационного исчисления, принципа максимума Понтрягина, динамического программирования. После описания этих методов рассматривается возможность их применения для различных задач. Изложены принципы решения нестационарных задач. В заключение проводится сравнение методов оптимизации, описанных в четвертой и девятой главах, и даются некоторые рекомендации по их использованию. [c.8]

    Особая группа задач оптимизации — задачи, в которых критерий оптимальности представляет собой не функцию, а функционал [см. раздел 13, обсуждение формул (13.26) — (13.27)]. Так бывает, если критерий зависит не от значений каких-то факторов, а от характера непрерывного изменения этих факторов например, если протекание переходного процесса определяется непрерывным изменением управляющего воздействия во времени, или если состав смеси на выходе из аппарата идеального вытеснения определяется профилем температуры по всей его длине. В таких задачах используют вариационные методы (вариационное исчисление, динамическое программирование, принцип максимума). [c.252]

    В условиях постоянных флуктуаций отдельных параметров математической модели могут оказаться целесообразными статистические макрокинетические модели полимеризационных процессов, различные эмпирические модели. Используемые при оптимизации методы весьма разнообразны покоординатный спуск с применением метода формального поиска (при полимеризации стирола [131]) динамическое программирование, нелинейное программирование и эвристические алгоритмы (для каскадно-реакторных схем типовых полимеризационных процессов [29]) наискорейший спуск (для полимеризации бутадиена [35]) метод сопряженных градиентов [116], принцип максимума [101] (для полимеризации изопрена) различные другие поисковые алгоритмы. В случае полимеризации в трубчатом реакторе (который здесь подробно не рассматривается) используют принцип максимума Понтрягина, прямые вариационные методы и др. (см., например, для процесса полимеризации этилена [132]). По мере внедрения ЭЦВМ в управление производством роль этих оптимизационных расчетов будет все больше и больше повышаться, охватывая все производство процессы полимеризации, дегазации, выделения и сушки, рецикл непрореагировавших мономеров, их ректификацию и очистку и т. д. [c.230]

    В книге изложены методы оптимизации, основанные на решении усредненных задач нелинейного программирования и вариационных задач, показаны возможности их применения для расчета аппаратов химической технологии. Значительное место в книге занимают методы расчета циклических режимов, в которых управляющие переменные нли переменные, характеризующие состояние процесса, меняются периодически. Книга рассчитана на инженеров, занимающихся оптимизацией технологических аппаратов и схем. Она будет полезна преподавателям и студентам вузов, специализирующихся в области управления и проектирования процессов химической технологии. [c.2]

    Вариационные задачи оптимального управления процессами газопромысловой технологии можно решать на основе использования математических методов оптимизации [3, 13, 28, 31], к которым в первую очередь следует отнести линейное и динамическое программирования и принцип максимума. [c.57]

    Понятие сопряженного процесса является обобщением понятия сопряженной системы, применяемой в вариационном исчислении для формулировки необходимых условий оптимальности [37] (в принципе максимума Понтрягина сопряженную систему использовали применительно к задаче оптимального управления [19]). С появлением вычислительной техники и началом бурного развития методов численного решения задач оптимизации было обращено внимание на другой аспект возможного использования сопряженной системы, а именно, на удобство получения с ее помощью градиента оптимизируемой величины. [c.139]

    Для решения задач оптимизации химико-технологических процессов обычно используют методы нелинейного программирования (поисковые методы) [1, 3] и методы теории оптимального управления вариационного исчисления [4], динамического программирования 15], принципа максимума Понтрягина [6], дискретного принципа максимума 17]. Наибольшее распространение получили поисковые методы как наиболее гибкие и универсальные. Эти методы находят также широкое применение при решении задач идентификации (определение некоторых коэффициентов уравнений, представляющих собой математическую модель исследуемого процесса). Кроме того, поисковые методы могут быть эффективно использованы при синтезе оптимальной структуры химико-технологических систем, который в общем случае представляет собой задачу дискретно-непрерывного программирования в частности, они могут быть использованы при получении нижних оценок в методе ветвей и границ (см. гл. VI). [c.14]


    Метод вариационного исчисления. В задачах оптимизации хими-ко-технологических процессов нередко критерии оптимальности представляются в виде функционалов, решениями которых являются искомые функции. В этих случаях задача заключается в нахождении экстремума функционала, зависящего от одной или нескольких [c.247]

    В настоящее время для решения оптимальных задач применяют в основном следующие методы 1) исследование функций классического анализа 2) метод множителей Лагранжа 3) вариационное исчисление 4) динамическое программирование 5) принцип максимума 6) линейное программирование. Однако общего метода, пригодного для решения всех без исключения задач, возникающих на практике, нет. Вместе с тем каждый из перечисленных выше методов имеет предпочтительные области применения. Так, метод динамического программирования наилучшим образом приспособлен для решения задач оптимизации многостадийных процессов. Такие задачи чаще всего возникают при проектировании процессов ООС и СК, осуществляемых либо в многоступенчатых реакторах, либо в каскадах реакторов. Поэтому мы в сжатой форме рассмотрим основные положения метода динамического программирования. [c.191]

    Одной из возможностей интенсификации процессов химической технологии является использование периодических изменений управляющих воздействий и переменных, характеризующих состояние процесса. При таком нестационарном периодическом режиме в целом ряде случаев средняя продуктивность аппарата за цикл оказывается больше, чем при оптимальном режиме с неизменными параметрами. Методы расчета таких режимов в последние годы интенсивно развиваются-—см. работы (12, 15, 38] и др. Автор полагает, что возникающие здесь вариационные задачи имеют свою специфику и тесно связаны с усредненными задачами нелинейного программирования. Как для понимания методов решения задач оптимизации, так и для получения алгоритмов решения очень полезным оказалось понятие о расширении экстремальных задач. С использованием этого понятия изложены некоторые принципиальные [c.3]

    В книге в доступной форме изложены основы методом оптимизации (классический анализ, вариационное исчисление, принцип максимума, динамическое, линейное и нелинейное программирование) с иллюстрацией их на объектах химической технологии. Сформулированы общие положения, касающиеся выбора критериев о[1ти-мальности химико-технологических процессов, и приведены их математические модели. Рассмотрены задачи, связанные с оптимизацией конкретных процессов. [c.4]

    В литературе имеются серьезные работы, посвященные разбору проблемы в целом и ее отдельных частей. Из них особенно заслуживают внимания последние статьи Берга, Келлета с сотр.з- Керна=, ТаборекаЭ- о. Некоторые нз новейших методов оптимизации, основанные на вариационном исчислении , открывают большие возможности, если они могут быть использованы для расчета общего случая. Эти методы находят широкое применение для расчета реакторов и типовых процессов .  [c.173]

    Поиски оптимальных решений привели к созданию специальных математических методов и уже в XVIII в, были заложены математические основы оптимизации (математический аппарат бесконечно малого, вариационное исчисление, численные методы и др.). Однако до второй половины XX в. методы оптимизации во многих областях науки и техники применялись очень редко, поскольку практическое использование математических методов оптимизации требовало огромной вычислительной работы, которую реализовать без быстродействующей вычислительной техники было крайне трудно, а в ряде случаев и невозможно. Особенно большие трудности возникали при решении задач оптимизации процессов в химической технологии. [c.241]

    Проведенные расчеты показывают, что в ряде случаев, например, когда известно хорошее начальное приближение к ОТП, применение прямых вариационных методов позволяет значительно уменьшить трудоемкость общей процедур оптимизации. В связи о этим нагл представляется, что прямые вариационные методы при решении задач оптишзации химико-технологических- процессов должны находить все большее использование. [c.122]

    Кроме того, на примере оптимизации реактора изложен подход к решению реальной вариационной задачи с ограничениями типа неравенств. Решение этих задач представляет собой, вообще говоря, весьма сложную проблему. Однако задачу оптимизации реактора идеального вытеснения все же можно решить, если принять во внимание некоторые свойства оптимизируемого процесса. К сожалению, и общем случае не представляется возможным указать достаточно удобные методы решения вариационных задач с ограничениями тйпа неравенств. Поэтому для каждого конкретного процесса приходится искать са.мый удобный прием или же решать задачу с помощью других методов, например динамического программирования или принципа максимума, более приспособленных для решения таких адач. [c.222]

    Статьи Гоулда с сотр. затрагивают проблему оптимизации управления реактором как нелинейной системы. В работе Бичера и Гоулда обсуждается возможность динамической оптимизации при помощи цифровых машин. Пользуясь методами вариационного исчисления, они вывели систему уравнений Эйлера— Лагранжа, решаемую для определения оптимального пути, по которому должен следовать процесс в реакторе после внесения возмущения. [c.120]

    Метод динамического программирования применим к любым многостадийным процессам, в которых на каждой стадий надо принимать решения для оптимизации всего процесса. Среди работ, в которых этот метод использовался для оптимизации химических реакторов, прежде всего надо отметить цикл работ Р. Арпса, которые затем были обобщены в его монографии . При полющи указанного метода Р. Арис рассмотрел оптимизацию последовательности реакторов идеального смешения адиабатических полочных реакторов с охлаждением потоков между полками теплообменниками (или исходным реакционным газом, либо газом, отличным от исходного), а также оптимизацию реактора идеального вытеснения. В частности, он получил ранее найденные методом вариационного исчисления уравнения оптимальной температурной кривой в реакторе идеального вытеснения для общего случая. [c.10]

    Арис [1, 2] дает введение к использованию динамического программирования для оптимизации дискретных и непрерывных процессов и рассматривает применение этого метода к широкому классу реакторов. Четкое описание способов использования классического вариационного исчисления для определения наилучшего распределения температур в реакторах с принудительным движением потока дано Катцем [5]. Катц показал, что применение динамического программирования к этой задаче приводит к дифференциальному уравнению в частных производных. Рассмотренные в предыдущей главе доклады Хорна посвящены применению градиентного [c.381]


Смотреть страницы где упоминается термин Вариационные методы оптимизации процессов: [c.40]   
Методы кибернетики в химии и химической технологии Издание 3 1976 (1976) -- [ c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитическая оптимизация процессов, метод вариационные

Вариационные методы оптимизации

Метод вариационный

Метод вариационный Вариационный

Метод оптимизации

Метод оптимизации процессов

Оптимизация процессов

Оптимизация процессов оптимизация



© 2025 chem21.info Реклама на сайте