Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

гибридные орбитали строение

    Исходя из приведенных данных, строение молекулы Оз можно объяснить следующим образом. Центральный атом кислорода молекулы Оз находится в состоянии хр2-гибридизации (за счет 2 -, 2p .- и 2р, -орбиталей). Две из гибридных 5р -орбиталей центрального атома участвуют в образовании двух <т-связей О—О (дпух молекулярных о< и-орбиталей). Третья хр -гибридная орбиталь (молекулярная сг-орбиталь) содержит неподеленную электронную пару. 2р -Орбиталь центрального атома (расположенная перпендикулярно плоскости расположения атомов) и 2р -орбитали крайних атомов участвуют в образовании нелокализованной я-связи (молекулярная ясв-орбиталь). Таким образом, невозбужденное состояние молекулы Оз отвечает следующему заполнению молекулярных орбиталей  [c.320]


    Делокализованная л-связь. Рассмотрим химические связи в карбонат-ионе С0 Этот ион имеет треугольное строение. Атом углерода за счет электронов р -гибридных орбиталей образует три связи, лежащие в плоскости под углом 120°, Четвертый электрон углерода образует л-связь. Валентное насыщение одного атома кислорода достигается за счет образования л-связи, двух других -за счет присоединения электрона. Строение такого иона изображают формулой [c.71]

    Гибридизация в молекулах аммиака и воды. Мы вкратце обсудили геометрическое строение соединений бериллия, бора и углерода, пользуясь концепцией гибридизации. При дальнейшем движении по периоду вправо мы переходим к соединениям азота и кислорода, геометрия которых уже обсуждалась в рамках чистых р-орбиталей. Такое рассмотрение нельзя признать целиком удовлетворительным, если помнить, что экспериментальные значения валентных углов в молекулах HgN (107°18 ) и Н О (104°ЗГ) больше, чем между чистыми р-орбиталями (90°). С другой стороны, экспериментальные величины гораздо ближе к 109°28 — тетраэдрическому углу при sp -гибридизации связей. Так возникла идея о существовании общей для всех элементов второго периода гибридизации атомных s- и р-орбиталей. В применении к молекулам HgN и HjO это выглядит так, как показано на рис. III. 15. Октет электронов вокруг каждого центрального атома располагается на четырех sp -гибридных орбиталях, причем в моле- [c.183]

    Приведите графическую схему р -, зр - и 5р-гибридных орбиталей атома углерода с учетом их пространственного строения. Какие простые вещества соответствуют каждому валентному состоянию атома углерода  [c.6]

    Химическую связь в молекуле метана, СН4, удается хорошо объяснить, исходя из представлений о тетраэдрических хр -гибридных орбиталях атома углерода. Эти представления позволяют также объяснить строение этана, СзН , и многих других органических соединений, в которых атомы углерода соединены друг с другом в цепи простыми связями. В этане к каждому из двух атомов углерода присоединено по три атома водорода с образованием ковалентных связей, в которых участвуют три из четырех гибридных хр -орбиталей. Четвертая хр -орбиталь каждого атома углерода используется для образования ковалентной связи с другим таким же атомом. Перекрывание р -гибридных орбиталей двух атомов углерода приводит к возникновению устойчивой связывающей молекулярной орбитали и неустойчивой разрыхляющей орбитали. Связывающая орбиталь, симметричная относительно оси С—С, является а-орбиталью и заполнена двумя электронами со спаренными спинами. [c.565]


    Такая высокая химическая устойчивость алканов объясняется тем, что все связи в их молекулах образованы с участием р -гибридных орбиталей атома углерода и являются очень п-рочными. р -Гибридизацией орбиталей углерода объясняется также и то, что молекулы алканов имеют зигзагообразное строение с углом между связями у атома углерода 109°  [c.297]

    Комплексный ион (Вр4] имеет тетраэдрическое строение, которое характерно н для других соединений бора, имеющих донорно-акцепторные а-св.язи. В этих соединениях формируются 4 ковалентные а-связи, образующиеся из 5р -гибридных орбиталей атома бора. [c.328]

    Сказанное проиллюстрируем на примере строения молекул метана, аммиака и воды. Центральные атомы этих молекул образуют химические связи за счет электронов 5р -гибридных орбиталей. У атома углерода на четыре 5/ -гибридные орбитали приходится четыре электрона  [c.67]

    Как уже отмечалось, угловое строение Н2О и пирамидальное строение ЫНз можно понять из взаимного расположения 2р-орби-талей, на которых в свободных атомах находятся неспаренные электроны. Однако реально углы между связями в молекулах Н2О и ЫНз существенно ближе к соответствующему хр -гибридным орбиталям углу 109°. Гибридные 5р -орбитали обеспечивают большее перекрывание с 1б -орбиталями атомов Н и более предпочтительны для образования связей. Поэтому в образовании этих молекул принимают участие гибридные 5р -орбитали атомов кислорода и азота, а неподеленные пары электронов располагаются на остав- [c.77]

    Однако тетраэдрической координацией не исчерпываются стерео-химические возможности углерода. Геометрия ненасыщенных соединений типа этилена и его производных имеет совершенно другой вид плоский скелет молекулы с валентными углами 120 4°. Угол 120° характерен для 5р -гибридных орбиталей, поэтому естественно выбрать именно их для объяснения геометрического строения эти- [c.182]

    Пространственное строение комплексных соединений (как и простых соединений) можно объяснить путем рассмотрения типа гибридных орбиталей центрального атома, которые участвуют в образовании связей с лигандами. [c.85]

    Представление об электронной структуре бензола тесно связано сего геометрическим строением. Плоская координация связей с валентными углами 120 свидетельствует в пользу существования зр -гибридных орбиталей на атомах углерода. Таким образом, молекула бензола представляет собой плоский скелет из а-связей. В перпендикулярной плоскости остаются облака шести р-электро-нов, перекрывание между которыми дает п-связи. Шесть чистых р-орбиталей взаимодействуют между собой с образованием шести молекулярных орбиталей, три из которых оказываются связывающими, а три разрыхляющими [c.197]

    Метод рассмотрения электронного строения молекулы бензола типичен для изучения непредельных органических соединений. Обычно а-связи атомов углерода описываются в рамках метода ВС с помощью подходящих гибридных орбиталей, а я-связи рассматриваются в рамках метода МО. Такой подход оправдан тем, что а-связывающие орбитали обычно значительно устойчивей, поэтому электроны на я-орбита-лях определяют химические и спектральные свойства молекулы. [c.198]

    При таком строении атомы водорода располагаются симметрично на поверхности сферы вокруг атома углерода (не лежат в одной плоскости). Аналогично молекуле метана построена молекула СС14, т. е. молекулы типа АХ4, у которых валентные электроны атома А находятся на р -гибридных орбиталях, будут иметь тетраэдрическое строение. [c.94]

    Строение алканов. Электронная конфигурация атома углерода в алканах l.s 2s 2p . Образование гибридных орбиталей можно представить в виде схемы  [c.287]

    Для сопряженных систем обычным является а -п-описание их геометрии. Как можно описать строение молекул этилена и ацетилена при помощи эквивалентных гибридных орбиталей  [c.44]

    Атом азота находится в состоянии sp -гибридизации (две из трех sp -гибридных орбиталей образуют ст-связи). Он поставляет в ароматический секстет один р-электрон. Неподеленная пара электронов на sp -гибридной орбитали обусловливает свойства пиридина как основания (см. 10.3). Атом азота с таким электронным строением принято называть пиридиновым (рис. [c.47]

    Для возбуждения атомов инертных газов требуются значительные количества энергии. Полученные в последние годы оксиды и фториды этих элементов мало устойчивы и представляют собой сильнейшие окислители. Как правило, соединения атомов в высшей степени окисления неустойчивы и проявляют себя как окислители. В ряде случаев соединения атомов в высшей степени окисления приобретают устойчивость (С, 81) в силу симметричного строения их молекул за счет гибридных орбиталей. [c.401]

    В соединениях типа ЭХ а связи с тремя соседними атомами осуществляются за счет перекрывания трех гибридных орбиталей и такие молекулы имеют плоское треугольное строение (дипольный момент равен нулю). [c.305]


    Строение тиофена и фурана аналогично детально обсужденному выше строению пиррола, с той лишь разницей, что в гетероцикл вместо фуппы КН включен атом серы или кислорода соответственно. Гетероатом предоставляет одну пару электронов для образования ароматической системы, так же как и в случае пиррола, а другая пара электронов, не включенная в ароматическую систему, занимает лр -гибридную орбиталь, расположенную в плоскости цикла. Канонические формы тиофена и фурана полностью аналогичны каноническим структурам пиррола. Однако большая электроотрицательность атомов серы и кислорода по сравнению с атомом азота определяют меньший вклад поляризованных канонических структур с положительно заряженным гетероатомом в истинное строение гетероциклических молекул. Для тиофена и фурана мезо-мерное смещение электронной плотности от гетероатома к атомам углерода цикла не перекрывает индуктивную поляризацию молекул в результате смещения электронной плотности к гетероатому (определяемые индуктивной поляризацией дипольные моменты тетрагидротиофена и тетрагидрофурана, равные 1,87 и 1,68 В соответственно, все же больше, чем дипольные моменты соответствующих ароматических молекул). В целом, молекулы тиофена и фурана представляют собой диполи со смещением электронной плотности к гетероатому [c.22]

    В отсутствие сопряженных с карбанионным центром заместителей карбанион имеет пирамидальное строение, причем свободная электронная пара занимает зр -гибридную орбиталь углерода. Обычно считают, что карбанионы такой структуры способны к легкому обращению тетраэдрической конфигурации (инверсии)  [c.395]

    Установление тетраэдрического строения молекулы метана с четырьмя одинаковыми связями С—Н привело к гипотезе о вр -гибридизации углеродного атома. Четыре связи С—Н являются о-связями, которые образуются при взаимодействии зр -гибридных орбиталей углеродного атома и 15-орбиталей четырех водородных атомов. [c.94]

    Как уже отмечалось, угловое строение Н2О и пирамидальное строение N1 3 можно понять из взаимного расположения 2р-орбиталей, на которых в свободных атомах находятся неспаренные электроны. Однако реально углы между связями в молекулах Н2О и ЫНз существенно ближе к соответствующему 5/5 -гибридным орбиталям углу 109°. Гибридные 5р -орбитали обеспечивают больше перекрывание с 15-орбиталями атомов Н и более предпочтительны для образования связей. Поэтому в образовании этих молекул принимают учгстие гибридные 5р -орбитали атомов кислорода и азота, а неподеленные пары электронов располагаются на оставшихся — одной в случае N и двух в случае О гибридных атомных орбиталях. Однако в этих молекулах симметрия существенно ниже, чем в СН , и, следовательно, система гибридных орбиталей уже не полностью эквивалентна, углы между связями отличаются от тетраэдрического. [c.70]

    Пиридин — шестичленный гетероцикл с одним атомом азота — по своему электронному строению напоминает бензол. Все атомы углерода и атом азота находятся в состоянии -гибридизации, и все а-связи (С—С, С—и С—Н) лежат в одной плоскости. Остановимся подробнее на электронном строении атома азота. Из трех его гибридных орбиталей две вступаю г в образование а-связей с двумя атомами углерода, а третья орбиталь содержит неподеленную пару электронов. За счет электрона, находящегося на негибридной / -ор-битали, атом азота участвует в образовании единого электронного облака с / -электронами пяти атомов углерода (рис. 12.1, а). Атом азота с таким электронным строением называют пиридиновым. [c.353]

    Объясните строение алмаза исходя и.ч нрсдставления об участии в химической связи, р -гибридных орбиталей атомов углерода. Почему алмаз отличается высокой твердостью  [c.99]

    Графит имеет слоистое строение. Валентное состояние атома углерода в слое можно объяснить участием его, <р--гибридных орбиталей. Исходя из строения и характера химической связи обьясните, почему графит используется а) как смазочный материал б) как материал электродов. [c.99]

    Как мы видели, тригонально-пирамидальное строение имеет молекула аммиака НаЫ. Согласно методу валентных связей в ней атом азота находится в состоянии 5р -гибридизации. Из четырех вр -гибридных орбиталей азота три участвуют в образовании трех ст-связей Ы—Н, а четвертую орбиталь занимает несвязывающая электронная пара. В терминах метода молекулярных орбиталей это соответствует заполнению трех связывающих и одной почти несвязывающей молекулярной ст-орбитали  [c.100]

    В атомных решетках атомы связаны за счет ковалентной или металлической связи. Так, атомно-ковалентная решетка у алмаза (рис. 85). Строение ковалентных кристаллов определяется типом гибридизации орбиталей со-ставляюш,их их атомов. В кристалле алмаза, например, каждый из атомов углерода посредством электронов 5р -гибридных орбиталей связан с. четырьмя соседними атомами углерода. Координационные числа [c.135]

    Исходя из приведенных данных строение молекулы О3 можно объяснить следующим образом. Центральный атом кислорода молекулы О3 находится в состоянии 5р -гибриднзации (за счет 25-, 2р и 2ру-орбиталей). Две из гибридных хр -орбиталей центрального атома участвуют в образовании двух а-связей О—О (двух молекулярных асв-орбиталей). Третья р -гибридная орбиталь (молекулярная а-орбиталь) содержит неподеленную электронную пару. гр -Орбиталь центрального атома (расположенная перпендикулярно плоскости расположения атомов) и гр -орбитали крайних атомов участвуют в образовании нелокализованной я-связи (молекулярная я в. орбиталь). Таким образом, невозбужденное состояние молекулы О3 отвечает следующему заполнению молекулярных орбиталей  [c.347]

    Как и у алмаза, в графите каждый атом углерода образует друг с другом четыре связи. Однако эти связи неодинаковые. Три из них являются а-связямн, образованными в результате перекрывания р -гибридных орбиталей атомов углерода. Все они располагаются в одной плоскости под углом 120°, образуя непрерывную плоскую сетку, состоящую из правильных шестиугольников, в углах которых находятся атомы углерода. Четвертая я-связь образуется за счет перекрывания лепестков р-орбиталей выше и ниже плоскости, в которой расположены атомы углерода. п-Связь образует сплошное электронное облако по всему слою атомов углерода, как в случае металлической связи. Углеродные слои у графита связаны очень слабыми силами межмолекулярного пзаимодействия. Эти особенности строения графита и обусловливают такие его свойства, как электропроводность, слоистость и т. д. [c.241]

    Строение и свойства. Непредельные углеводороды с тройной связью имеют в молекуле углерода группировку —С=С—. Иногда их называют ацетиленовыми углеводородами. Тройная связь в ацетилене содержит одну а-связь и две п-связн. о-Связь образуется за счет 5р-гибридных орбиталей, которые обобществляются под углом 180 С, т. е. молекула ацетилена линейная. Две оставшиеся на каждом атоме углерода р-орбитали являются чистыми (не гибридизнровянными) и при боковом перекрывании образуют две л-связи, которые расположены в двух взаимно перпендикулярных плоскостях  [c.312]

    Примером может служить молекула ВгНа- Согласно представлениям об электронных парах в этой молекуле не хватает одной пары электронов для образования семи связей — минимального числа, необходимого для соединения восьми атомов. Реальное строение молекулы приведено на рис. 29. Оно соответствует образованию каждым атомом В двух двухцентровых связей с атомами И, а кроме того, образование единой системы из шести молекулярных орбиталей за счет двух атомных 15-орбиталей атомов Н и четырех 5р -гибридных орбиталей двух атомов В. На двух связывающих орбиталях этой системы размещается четыре электрона, по одному от каждого атома В и каждого мостикового атома Н. [c.73]

    Вспомним, что связь образуется за счет перекрывания орбита-лей при сближении атомов. Поскольку для гибридных орбиталей электронная плотность сосредоточена в одном направлении (в отличие от симметричного относительно ядра распределения электронной плотности 5-, р- и -орбиталей), в этом случае обеспечивается более эффективное перекрывание атомных орбиталей, и именно система гибридных орбиталей должна использоваться для образования связей. В соответствии с этим (см. рис. 16) атом Mg, имеющий гибридные 5р-орбитали, дает молекулы линейного строения атом В — плоские молекулы (например, ВРз) с тремя связями, на-правленнрлми под углом 120° друг к другу атом С — молекулы, в которых оп находится в центре тетраэдра, образуемого четырьмя связанными с ним атомами. В молекуле РСЬ атом Р находится в центре трехгранной бипирамиды, образуемой пятью атомами хлора, а в 5Р б атом 5 находится в центре октаэдра с шестью атомами Р в его вершинах. [c.77]

    Образование гибридных орбиталей типа dsp , определяющих квадратное строение комплексов, можно ожидать для изоэлектрон-ных и Аи +, внешний электронный слой которых можно изобразить следующим образом  [c.86]

    В зависимости от числа гибридных орбиталей центрального атома существует несколько типов гибридизации, т. е. соответствующего стереохимичес-кого расположения осей симметрии гибридных орбиталей, а следовательно, и а-связей А—В. Такое положение гибридных орбиталей приводит к фиксации концевых атомов В в пространстве вокруг центрального атома, а это в свою очередь позволяет геометрически описать строение всей частицы АВ . Гибридные орбитали, содержащие неподеленные па- [c.162]

    Возникает и такой вопрос если для молекул воды и аммиака характерна 5р -гибридизация, то почему угол между связями получается значительно меньше по сравнению с тетраэдрическим Чтобы ответить на этот вопрос, обратимся к схемам строения молекул метана СН4, аммиака ЫНз и воды НаО (см. рис. 17). Как видно из рисунка 17, а, у атома углерода все четыре 5/ -гибридные орбитали заполнены свя-зываюш,ими электронными парами. У атома азота (рис. 17, б) только три 5р-гибрндные орбитали заполнены связывающими электронными парами, а четвертая 5р -гибридная орбиталь заполнена неподеленной электронной парой. У атома же кислорода (рис. 17, в) связывающими электронными парами заняты только две р -гибридные орбитали, а две другие заполнены поделенными электронными парами. Следовательно, отклонение от тетраэдрического угла (109°28 ) обусловлено действием неподеленных электронных пар, находящихся на яр -гибридиых орбиталях. У атома азота одна такая пара, поэтому угол отклонения от тетраэдрического небольшой и составляет 107,3°. У атома кислорода их уже две, поэтому угол отклонения от тетраэдрического больше и составляет 104,5°. [c.79]

    Строение молекулы и свойства метана. Электронное строение молекулы метана рассмотрено в 3.2. Атом углерода в молекуле метана находится в состоянии хр -гибрндизации. В результате перекрывания четырех гибридных орбиталей атома углерода с 5-орбиталями атомов водорода образуется весьма прочная молекула метана. Электронное строение молекулы метана см. рис. З.П. [c.284]

    Кратность химической связи. Кратные связи — ковалентные связи, осуществляемые более чем одной парой электронов. В молекуле этилена С2Н4 каждый из возбужденных атомов углерода подвержен р2 гцбридизации. Две гибридные орбитали используются на образование связи с двумя атомами водорода, а третья гибридная орбиталь — для связи с другим атомом углерода. Таким образом, у каждого атома углерода в запасе остается еще по одному неспаренному 2р-электрону. При 5р2 1-ибридизации электронные облака располагаются в одной плоскости под углами 120° друг относительно друга. Из экспериментальных данных действительно следует, что молекула этилена имеет плоское строение (рис. 44). [c.84]

    В отсутствие сопряженных с ним заместителей карбанионный центр имеет пирамидальное строение, причем свободная электронная пара занимает хр -гибридную орбиталь углерода (сравни с аминами, которые изоэлектронны с карбанионами). Обычно считают, что инверсия карбанионов — достаточно быстрый процесс. Делокализация отрицательного заряда л-сопряженными заместителями приводит к изменению гибридизации карбаннонного углеродного атома в сторону зр . Это ведет к тому, что карбанионный центр принимает плоскую конфигурацию. [c.545]

    Для правильного понимания строения дегидробензола необходимо иметь в виду, что при / -гибридизации двух атомов углерода, связанных тройной связью, валентный угол должен быть равен 180 Это означает, что эти два атома углерода и два атома углерода, непосредственно с ними связанные, должны бьггь расположены линейно. В щестичленном цикле дегидробензола по геометрическим соображениям это невозможно. Поэтому вторая л-связь тройной связи дегидробензола, лежащая в плоскости кольца дегидробензола, может образоваться только за счет пере-1фывания -гибридных орбиталей соседних атомов углерода. При боковом перекрывании хр -орбиталей (находящихся в плоскости [c.577]

    При таком строении я-элекгронная система не принимает участия в стабилизации фенил-катиона. Кроме того, наличие -гибридной вакантной орбитали делает его менее стабильным по сравнению с алкильными катионами, где пустой является негибридная р-орбиталь (гл.9). В самом деле, в алкильных катионах шесть валентных электронов располагаются на трех 5р -гибридных орбиталях, а в фенил-катионе четыре электрона занимают две 5р -орбитали (ст-углерод-углеродные связи), а два являются п-электро-нами, т.е. находятся относительно далеко от ядер и слабее с ними взаимодействуют. Значит, фенил-катион должен быть менее [c.617]


Смотреть страницы где упоминается термин гибридные орбитали строение: [c.109]    [c.338]    [c.39]    [c.1231]    [c.690]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.171 ]




ПОИСК





Смотрите так же термины и статьи:

Орбиталь гибридная

гибридная



© 2025 chem21.info Реклама на сайте