Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол электронная структура

Рис. 13-27. Две кекулевские структуры бензола, три его дьюаровские структуры и схематическое изображение делокализации электронов по бензольному кольцу. Структуры Кекуле и Дьюара иногда называют резонансными структурами бензола. Эта несколько неудачная терминология вовсе не означает, что связи перепрыгивают из одного положения в другое или резонируют между различными структурами, а лишь предполагает, что истинная п-электронная структура бензола не может быть представлена локализованными связями и предста-вляег собой нечто промежуточное между пятью указанными структурами. Рис. 13-27. Две <a href="/info/930177">кекулевские</a> <a href="/info/27425">структуры бензола</a>, три его дьюаровские структуры и <a href="/info/376711">схематическое изображение</a> <a href="/info/17913">делокализации электронов</a> по <a href="/info/20486">бензольному кольцу</a>. <a href="/info/96577">Структуры Кекуле</a> и Дьюара <a href="/info/1215220">иногда называют</a> <a href="/info/107198">резонансными структурами бензола</a>. Эта несколько неудачная терминология вовсе не означает, что связи перепрыгивают из одного положения в другое или резонируют <a href="/info/981655">между различными</a> структурами, а лишь предполагает, что истинная п-электронная структура бензола не может быть представлена локализованными связями и <a href="/info/1653684">предста</a>-вляег <a href="/info/1795776">собой</a> нечто <a href="/info/502137">промежуточное между</a> пятью указанными структурами.

    В некоторых случаях, без учета резонанса структур, в рамках метода ВС может получаться качественно неправильное описание электронной структуры молекулы. Так, для бензола ни одна из двух классических формул Кекуле не отражает реальной симметрии молекулы, а также ее физических и химических свойств. Другой пример — диоксид углерода СО2. Длина связи углерод — кислород в нем равна 0,115 нм, тогда как длина нормальной двойной связи С=0 (в кетонах) равна 0,122 нм, а расчетная длина тройной связи С = 0 — 0,110 нм. Т. е. связь углерод — кислород в СО2 оказалась промежуточной между двойной и тройной, что можно объяснить в терминах концепции резонанса  [c.169]

    Термин структура широко используется в правилах ШРАС для определения различных понятий, например атомная структура, электронная структура, структура бензола и др. Термин строение ( конституция ) используют в правилах ШРАС для обозначения природы атомов в молекуле и последовательности их соединения. [c.152]

    Ароматический характер фурана, свойственный в равной степени также пирролу, тиофену, пиридину и т. п., заставляет предположить, что электронная структура этих пятичленных гетероциклических соединений аналогична структуре бензола. Необобщенная пара электронов атома О фурана (атома N пиррола или атома S тиофена) вместе с 4 электронами четырех атомов углерода образует 6 и-электронов, подобно тому, как это происходит в молекуле бензола. Эти тг-электроны размазываются внутри кольца, чем обусловливается его относительно насыщенный, ароматический характер  [c.959]

    Неверное предположение заключается в том, что молекула бензола описывается структурой Кекуле. В гл. 13 было установлено, что структура Кекуле не позволяет объяснить равную длину всех шести связей между атомами углерода в бензольном цикле и что удовлетворительное описание химической связи в этой молекуле должно основываться на теории делокализованных молекулярных орбиталей. В гл. 21 мы познакомимся с большим классом ароматических соединений, в которых имеются делокализованные электроны. Во всех случаях делокализация обусловливает повышение устойчивости молекулы, так как энергия делокализованных электронов понижается. Метод энергий связей позволяет оценивать величину этой стабилизации на основе измерений теплот образования ароматических соединений. [c.34]

    В принципе любую пару летучих соединений с близкими температурами кипения, но с резко различающимися электронными структурами можно использовать для характеристики полярности той или иной жидкой фазы по логарифму отношения объемов удер живания этих соединений на используемой жидкой фазе. Так, напри мер, была использована пара бензол-гексан и рассчитана относи тельная полярность по тому же способу для серии жидких фаз Получены следующие данные Рх р,Р -оксидипропионитрила при нята за 100, сквалана — за ноль) 96 — диэтиленгликольсукцинат [c.112]


    Представление об электронной структуре бензола тесно связано сего геометрическим строением. Плоская координация связей с валентными углами 120 свидетельствует в пользу существования зр -гибридных орбиталей на атомах углерода. Таким образом, молекула бензола представляет собой плоский скелет из а-связей. В перпендикулярной плоскости остаются облака шести р-электро-нов, перекрывание между которыми дает п-связи. Шесть чистых р-орбиталей взаимодействуют между собой с образованием шести молекулярных орбиталей, три из которых оказываются связывающими, а три разрыхляющими [c.197]

    Расчеты молекулярных характеристик в методе МОХ. Объяснив особые свойства ароматических соединений их электронной структурой, теория МО ЛКАО устанавливает корреляции (соответствия) между характеристиками МО и свойствами молекул. Например, как видно из рис. 70, рассчитанному в методе МОХ порядку связи в бензоле 1,667 отвечает длина связи 1,4 м, что находится в хорошем согласии с экспериментом (1,399 м). [c.234]

    Из особенностей электронной структуры аренов, рассмотренных в предыдущем разделе, следуют важнейщие химические свойства (реакции) аренов. Бензол, алкилбензолы СвНзК, в которых К — остатки алканов и циклоалканов, полифенилы крайне неохотно вступают в реакции присоединения по л-связям. Эта особенность обусловлена стабильностью замкнутых (К = б, 10, 14, 18 и т.д.) ароматических л-орбиталей их молекул, очень высокой энергией делокализации (сопряжения) л-электронов. Поэтому арены и не-бензоидные ароматические углеводороды легко присоединяют только лишь озон. Способность к реакциям присоединения Ог, СЬ, Вгг, Ма, N02 появляется лишь у конденсированных аренов на узловых атомах углерода, соединяющих соседние бензольные ядра  [c.366]

    Из сказанного выше следует, что родоначальные соединения обоих сравниваемых рядов (фуран и бензол) обнаруживают несколько иные спектральные свойства, чем их производные, т. е. те же циклы, но содержащие при ядре заместители, в особенности кратные связи в а-положении к циклу. В последнем случае имеет место нарушение устойчивой электронной структуры соответствующих циклов, что проявляется в известной конъюгации связей цикла с экзоциклическими связями, причем система фурана в большей степени подвержена действию заместителей, чем система бензола. [c.27]

    В конденсированных аренах в результате повышения энергии высшей заполненной МО, которое происходит по мере возрастания числа бензольных ядер в молекуле, наблюдается сильное уменьшение потенциала ионизации, поэтому они являются более сильными донорами электронов, чем молекула бензола. Вместе с тем электронные структуры конденсированных аренов хранят в себе много неразгаданных тайн. [c.337]

    Исследована [384, 395, 3961 адсорбция молекул различной электронной структуры на кремнеземах, поверхность, которых покрыта суль( - и карбоксильными группами. Бензол и гептан адсорбируются на поверхности таких ад- [c.175]

    Перечисленные способы представления электронной структуры бензола недостаточно лаконичны для их активного применения. В повседневной химической практике, в том числе при написании схем превращений, наибо- [c.385]

    Благодаря такой электронной структуре ядро пиррола, как и бензол, плоское, все атомы водорода также лежат в плоскости ядра, а секстет электронов образует области повышенной электронной плотности над и под плоскостью ядра. Атомы О и 8 также имеют неподеленные электронные пары, поэтому аналогичные пирролу ароматические системы (фуран и тиофен) могут образовываться с их участием. [c.519]

    Орбитали — кружками. Олово SnA имеет максимально возможную валентность и образует кристалл с тетраэдрической гибридизацией sp , подчиняющейся правилу 8 — N. Это и есть структура непроводящего серого олова, которое стабильно при температуре ниже 18° С. Единственный вид резонанса, не играющий здесь существенной роли, подобен резонансу в аналогичном по электронной структуре кристалле алмаза. Координационное число, большее 4, могло бы получиться при размещении большего числа атомов олова вокруг центрального атома. Устойчивость при этом достигалась бы за счет резонанса. Такой резонанс действительно возможен, но он должен быть синхронного типа, подобно резонансу между структурами Кекуле в молекуле бензола. Тетраэдрический характер гибридных орбиталей sp накладывает дополнительные ограничения именно на число эффективных схем спаривания. В результате полученный выигрыш в энергии не может скомпенсировать энергию отталкивания несвязанных атомов, которое возникает, как только координационное число становится больше 4. Олово SnB, напротив, двухвалентно но оно имеет металлические орбитали и должно быть проводником. Согласно Полингу [291], есть основания предполагать, что SnB является главной компонентой белого олова, стабильного при более высоких температурах. Считают, что в белом олове конфигурации SnB и SnA присутствуют в пропорции 3 1, что приводит к усредненной валентности 2,5. Очевидно, аналогичным путем можно истолковать все случаи дробной валентности. [c.356]


    До сих пор мы рассматривали ковалентные связи на основании представлений о перекрывании атомных орбит, при неявном предположении, что электроны, не занятые в связях, занимают такие же орбиты, как и в изолированных атомах. Такая картина позволяет объяснить некоторые качественные характеристики валентности, и при учете пространственной ориентации атомных орбит и введении идеи гибридизации удается дать удивительно хорошее описание геометрии молекул. Однако для некоторых молекул такие представления оказываются непригодными. Лучшим и наиболее хорошо известным примером является молекула бензола, для которой уже давно стали ясны недостатки формулы, предложенной Ке-куле. Если бы в молекуле бензола имелись три двойные связи углерод — углерод, как в структуре Кекуле, то по химическому поведению эта молекула должна была бы напоминать этилен, т. е. легко присоединять галогены и галогеноводороды. Хотя и можно получить продукты присоединения к бензолу, эта молекула обычно дает продукты замещения далее, для разрушения бензольного кольца необходимы очень жесткие условия, тогда как три этиленовые связи должны были бы легко разрываться при окислении. Кроме того, связь С—С в этане длиннее связи С=С в этилене, так что бензол со структурой Кекуле должен был бы быть несимметричным шестиугольником, тогда как на самом деле он является плоским правильным шестиугольником. Плоское строение с углами 120 показывает, что углеродный остов и связанные с [c.117]

    Авторам известно несколько удачных попыток систематически изменять строение углеводорода так, чтобы можно было дать лучшее объяснение результатам, аналогичным приведенным выше. По этому вопросу имеются некоторые данные в связи с влиянием структуры углеводородов на выходы, но этих данных очень мало. Например, очевидно, что замещение хлора или нитрогрунны (другими словами — электрофильных групп) в бензоле должно влиять на его электронную структуру. Следует определить, как такие замещения будут влиять на начальную температуру окисления. Такие опыты могли бы дать важные данные о процессе окисления. Более [c.290]

    Все эти структуры достаточно хорошо объясняют свойства симметрии бензола, но они не могут объяснить без дополнительных предположений необычную стабильность ароматического кольца. Развитие квантовомеханической теории валентности позволило объяснить электронную структуру бензола, удовлетворительно обосновавшую симметричные свойства бензольных ядер и значительную стабильндсть ароматической системы. [c.393]

    Различия в величинах относительной реакционной способности зависят как от активности алкилирующих агентов, так и от стерических затруднений и от изменения электронной структуры под влиянием заместителя. Соотношение констант скоростей -консекутивных стадий алкилирования бензола проийленом равны fei 2 йз 4 = 1,0 0,185 0,074 0,037. Установлено, что соотношение констант скоростей алкилирования бензола и толуола (при использовании их бинарных смесей) практически не зависит от температуры, времени, концентрации катализатора и мольных соотношений реагентов. [c.47]

    Условия опыта. Носитель неподвижной фазы ИНЗ-600 или сферохром-1 с диаметром зерен 0,5—0,25 мм. Жидкие фазы — сквалан и р, Р -оксидипропио-нитрил. Испытуемые жидкие фазы а) одна из следующих триэтилеигликоль, полиэтиленгликоль-400, трикрезилфосфат, 7,8-бензохинолин, апьезон Ь (25% от массы носителя), б) смесь сквалана с полиэтиленгликолем-400 в соотношении 1 1, либо 1 2, либо 1 4. Анализируемые веш,ества разной электронной структуры гексан — бензол марки ч. д. а. (1 1). Длина колонки 120 см, внутренний диаметр 4 мм. Газ-носитель — азот, его скорость 50 мл мин. Детектор — катарометр. Чувствительность самописца (по положению рукоятки множитель шкалы ) 1 10. Самописец ЭПП-09. Скорость диаграммной ленты 1440 мм ч. Объем пробы 0,006 мл. Температура колонки 60° С. [c.113]

    С развитием электронных представлений у химиков возникло естественное желание объяснить химические и другие особенности ароматических соединений их электронной структурой. При этом можно было поставить вопрос, какие особепости электронной структуры приводят к ароматическим свойствам, и только ли бензол и его производные могут быть носителями этих свойств среди ненасыщенных соединений. Успешный ответ на этот вопрос дала теория молекулярных орбиталей (Хюккель, 1931). [c.227]

    В отличие от алкеноп у бензола электроны л-связей не заключены в областях между каждой парой атомов углерода, а равномерно распределены по всем шести атомам, т. е. делокализованы. Единое л-электронное облако расположено над и под плоскостью шестичленного цикла (рис. 36). Таким образом, строение бензола может быть представлено в виде структур  [c.347]

    Теплота гидрирования диена почти вдвое больше теплоты гидрирования циклогексена, и, следовательно, теплота гидрирования трех двойных связей в структуре Кекуле, при условии их локализации, должна была бы иметь порядок величины —28,6 X 3 = —85,8 ккал/моль. Однако в действительности, как показывает опыт, при гидрировании бензола выделяется только 49,8 ккал/моль. Поэтому можно считать, что взаимодействие л-электронов в молекуле бензола делает ее более стабильной на 36 ккал/моль по сравнению с гипотетической моделью, для которой такого взаимодействия нет (стабилизация, возникающая в результате подобного рода взаимодействия в сопря 1 енных диенах, составляет всего лишь около 6 ккал/моль). Энергию, на величину которой молекула бензола стабилизована по сравнению с молекулой гипотетического циклогексатриена, имеющего локализованные двойные связи, правильно было бы называть энергией стабилизации. Тем не менее, ее часто называют энергией делокализацни, хотя вопрос о том, в какой мере стабилизация действительно обусловлена делокализацией, далеко не ясен. Широко используется также термин энергия резонанса, однако этот термин совершенно неудовлетворителен с семантической точки зрения, поскольку слово резонанс ассоциируется обычно с быстрыми переходами, осцилляциями между различными структурами (например, в случае бензола — между структурами Кекуле), которых в действительности нет. [c.32]

    Проведенное исследование позволило выяснить некоторые закономерности образования л-л-комплексов природных металлопорфиринов. Данные по физико-химическим характеристикам выявленных молекулярных комплексов (табл. 6.1.3) свидетельствуют о значительных различиях в способности MPf к специфическим взаимодействиям с бензолом, связанных, очевидно, с влиянием электронной структуры центрального атома металла и функциональных заместителей. Как было показано ранее [5], введение металла создает благоприятные условия для л-л-комплексообразования. Например, 2пТРР образует с СбНй устойчивый молекулярный комплекс состава 1 2, в котором обе молекулы растворителя энергетически равноценны, в то время как со-308 [c.308]

    Еще больше возможности у метода МО для описания электронной структуры бензола и его аналогов (аренов). В бензоле, аренах и бензоидных ароматических системах возникает новый тип сопряжений тс-связи нецелочисленной кратности, называемой ароматической %-связъю. Она возникает, когда сопряженная тс-система замыкается в цикл (шести-, десяти-, четырнадцати-, восемнадцатичленный и т. д.). В этом случае сопряжение тс-электронов приводит к таким явлениям, как 1) к выравниванию порядков всех химических связей в цикле 2) к жесткой плоскостной конформации молекулы 3) к потере способности к 1,2-, 1,4-, 1,6-присоединению химических реагентов и т. д. с раскрытием тс-связи. Эти свойства типичны для так называемых ароматических молекул. [c.73]

    Еще лучше иллюстрирует рассмотренное выше неэквивалентное (неодинаковое) п-взаимодействие С-атомов в нафталине его молекулярная диаграмма. Несмотря на условный характер абсолютных значений хщфр — порядков связей (—) и индексов свободной валентности (ИСВ ->), они правильно отражают я-сопряжение. Оно минимально между двумя узловыми атомами, заметно растет между ними и а-атомами углерода, очень велико на Се—Ср-связях (даже больше, чем в бензоле) и уменьшается между Ср-Ср (меньше, чем в бензоле). ИСВ малы у узловых С-атомов, нереально велики у С и меньше у Ср. Химические свойства нафталина находятся в полном согласии с его электронной структурой, рассчитанной методами квантовой химии. [c.336]

    Ароматические системы, в том числе углеводороды, по фазделяются по своим электронным структурам на электронодефицитные, электроноизбыточные и нормальные. Нормальные (бензол, арены, аннулены) содержат в цикле равное число атомов и тс-электронов (бензол — 6, нафталин — 10, аннулены — от 10 до 30 и больше). Электроно дефицитные содержат меньшее число тс-электронов, чем имеется атомов в ароматическом цикле (циклопро-пенилий-катион — —С=С— имеет 2 тс-электрона и 3 атома в цикле, тро- +/ [c.338]

    Гидридная поверхность не является строго неполярной. Атомы водорода несут некоторый отрицательный заряд. Как известно, кислород силоксановой связи обладает слабыми электронодонорными свойствами. Однако в зависимости от того, с какими другими атомами связан кремний, полярность силоксановой связи может быть разной. Очевидно, она будет неодинакова для связей -Si-O-Si-OH и -Si-O-Si-H. Этим, вероятно, объясняется то, что на поверхности гидридполисилоксана лучше адсорбируются молекулы ароматических соединений с полярными группами (фенол, нитробензол), чем молекулы бензола. Потенциальными центрами, ответственными за специфическое взаимодействие молекул адсорбата с поверхностью гидридполисилоксана, вероятно, могут быть атомы кремния силоксановой связи с вакантными 3 /-орбиталями. В табл. 8.7 представлен характер влияния природы поверхности на адсорбцию молекул разной электронной структуры. [c.374]

    Большое практическое (промышленное) значение представляют реакции каталитического окисления аренов с расщеплением одного бензольного ядра или видоизменением его электронной структуры. Так, бензол может быть окислен кислородом воздуха на ванадийоксидных катализаторах при 400 °С  [c.373]

    В этом соединении электронная структура координированного бутадиена далека от той, которой он обладал в свободном виде, и скорее всего напоминает связанные а-связью С -Сз две молекулы координированного этилена. Как уже упоминалось, сами /-металлы и особенно их катионы легко образуют металлоорганические комплексные соединения с ароматическими тс-лигандами — бензолом, другими аренами и циклопентадиенил-анионом С5Н5. Многообразие структур молекул л-комплексов металлов однозначно свидетельствует, что к ним нельзя применить представления о классических типах СТ-, л- и 5-связи. [c.595]

    Бензол можно описать как резонансный гибрид двух крайних форм, которые соответствуют, в терминах орбитального взаимодействия, двум возможным вариантам спаривания двух соседних р-электронов — структуры 1 и 2. Такие структуры называют каноническими, они не сушествуют сами по себе и представляют собой две крайние структуры, вносящие вклад в реальную струкгуру бензола. [c.16]

    Из структур (111) — (V) следует, что в положениях 2, 4, б реакции Sg менее вероятны более предпочтительны положения 3 и 5. Именно этими особенностями в целом можно объяснить меньшую реакционную способность в реакциях пиридина по сравнению с бензолом. Поскольку в целом в ядре П. по сравнению с бензолом электронная плотность занижена, то его принято считать к-двфицитной системой. [c.228]

    По своей я-электронной структуре пиридин и пиримидин аналогичны бензолу, поскольку каждый из них имеет в шестичленном цикле шесть я-электронов. Эти гетероарены относят к п-электронодефицитным системам. [c.400]

    Исследована [24, 35, 36] адсорбция молекул различной электронной структуры на кремнеземах, поверхность которых покрыта сульфо- и карбоксильными группами. Бензол и гептан адсорбируются на поверх-ностч таких адсорбентов хуже, чем на исходной. Однако адсорбция по отношению к метанолу и диэтиламину существенно увеличивается. Это объясняется тем, что сильнокислая сульфогруппа по способности хемо-сорбировать метиловый спирт и диэтиламин намного активнее, чем гидроксил. То же можно сказать и о карбоксипроизводных кремнезема. Изотермы адсорбции паров метанола, диэтиламина и пиридина на этих адсорбентах лежат выше, чем изотермы адсорбции на исходном гидроксилированном кремнеземе. Наблюден необратимый гистерезис адсорбции, что указывает на интенсивное взаимодействие молекул указанных веществ с поверхностными карбоксильными группами органокремнеземов. Значительная хемосорбция ниридина и диэтиламина, вероятно, объясняется образованием соответствующих химических соединений. Молекулы метанола, по-видимому, удерживаются поверхностными карбоксильными группами за счет водородных связей и, возможно, за счет образования поверхностных] эфиров. [c.154]

    Наличие незаполненных оболочек и переменной валентности у ряда рассматриваемых элементов дает основание предполагать способность их катализировать окислительно-восстановительные реакции, в частности реакции дегидрирования. Однако пока лишь немногие процессы дегидрирования исследовались систематически по всему ряду элементов группы 5с и лантаноидов. К таким процессам относятся, например, дегидрирование циклогексана в бензол (29, 98, 100] и тетралина в ароматические соединения [99, 101, 102], а также дегидроциклизация гептана в ароматические углеводороды [98, 103]. Полученные данные подтверждают высказанные выше предположения о связи каталитической активности с электронной структурой катионов РЗЭ (рис. 26 [104]). С заиолнением 4/-оболочки каталитическая активность изменяется периодически в пределах одного порядка, тогда как в ряду окислов, содержащих -электроны, каталитическая активность изменяется в пределах нескольких порядков [29]. Энергия активации дегидрирования циклогексана коррелирует с величинами эффективных магнитных моментов Ме +-ионов РЗЭ. [c.162]

    На практике для характеристики спектров ЯМР используется величина, называемая химическим сдвигом. Она представляет собой изменение положения резонансных линий относительно некоторого эталона и зависит от химической структуры вещества. Выражать сдвиг линий ЯМР в абсолютных значениях частоты или напряженности поля неудобно, поэтому его обычно измеряют по отношению к какому-либо стандарту. Для получения спектров протонного резонанса используют стандартные образцы, в состав которых входят вода, бензол и цикло-гексан каждое из этих веществ имеет лишь одну резонансную линию. Еще более удобен другой распространенный стандарт, тетраметилсилан 51 (СНз) 4- В молекуле этого вещества электронная структура окружения для всех протонов одинакова, и она приводит к существенному экранированию. Вследствие этого в сильном внешнем поле в спектре тет-раметилсиланаг возникает единственная узкая резонансная линия, не совпадающая с протонными линиями большинства других органических соединений. [c.184]

    Когда такие сведения недоступны, величина фд для данного мономера, скажем стирола, может быть найдена, если известны К для эталонного и исследуемого мономеров. Таким путем получены приблизительные значения ф на основе величины ф (бензол) = 1 (табл. 22 [179, 181], колонка 3). Наиболее стабильны по отношению к радиоактивным воздействиям молекулы углеводородов, в первую очередь ароматических, что согласуется с данными Шопфлэи Фэллоуса [182], а также Бартона [183]. Это объясняется электронной структурой бензольного кольца (нелокализован-ные л-электроны). Для спиртов и аминов величина ф более или менее независима от природы углеводородной части молекулы. Здесь имеет место отщепление ОН- и КНг-групп, очевидно, в виде отрицательных ионов. Колонку замыкает ССЦ, что, вероятно, является следствием большой электроотрицательности атома С1 и легкости образования отрицательных ионов хлора и радикальных осколков. [c.236]


Смотреть страницы где упоминается термин Бензол электронная структура: [c.395]    [c.141]    [c.78]    [c.113]    [c.207]    [c.209]    [c.66]    [c.123]    [c.460]    [c.250]    [c.177]    [c.184]    [c.289]   
Органическая химия (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Бензол структура

Бензол электронное



© 2025 chem21.info Реклама на сайте