Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внеклеточные

    Рассмотрим теперь нестационарный случай, когда состояние гомеостаза в сравниваемых организмах было нарушено в момент / = О и при г > О происходят процессы восстановления гомеостатических концентраций частиц в крови во внеклеточном пространстве. Распространим на этот случай введенные выше понятия. [c.184]

    Огромную роль осмос играет в живой природе. Стенки каждой клетки организма представляют собой полупроницаемую перегородку, и поэтому обмен веществ, перенос метаболитов и регулирование концентрации веществ в клетке и внеклеточном пространстве осуществляются в результате осмоса. [c.155]


    II существование анаэробиоза, т. е. способности микроорганизмов получать необходимую им энергию для жизнедеятельности путем брожения без доступа кислорода воздуха. Одним из самых веских оснований, которые послужили Пастеру в его непоколебимой уверенности, в его выводах об особом уровне материальной организации ферментов, является открытая им строгая стереоспецифичность живой природы. Но, как известно, и эти основания были если не отвергнуты, то отодвинуты на задний план открытием внеклеточного брожения, а позиция Пастера была объявлена виталистической. [c.178]

    Натрий — главный внеклеточный ион, а калий — основной внутриклеточный ион. Их соотношение регулирует осмотическое давление плазмы крови. [c.244]

    Ситуация может, однако, измениться, если за время пребывания пары в клетке произойдет изменение спинового состояния одного из свободных радикалов. Если пара изначально находилась в синглетном состоянии, она перейдет в триплетное состояние, что сделает невозможной рекомбинацию. Наоборот, если пара, изначально находившаяся в триплетном состоянии, успеет до выхода свободных радикалов из клетки перейти в синглетное состояние, станет возможной рекомбинация (или диспропорционирование). Поэтому любые факторы, ускоряющие взаимные переходы между различными спиновыми состояниями пары свободных радикалов, будут влиять на соотношение продуктов внутриклеточного и внеклеточного превращения этих свободных радикалов. [c.172]

    Качественно суть этого явления можно пояснить следующим образом. Если в составе по крайней мере одного из свободных радикалов, образовавшихся в клетке, имеется парамагнитное ядро, расположенное в достаточной близости от неспаренного электрона, то создаваемое этим ядром локальное магнитное поле будет оказывать существенное влияние на скорость взаимных переходов между синглетным и триплетным состояниями пары. При этом ядра в разных спиновых состояниях создают разное магнитное поле и по-разному влияют па скорость этих переходов. Поэтому соотношение продуктов внутриклеточного и внеклеточного превращений будет различным ири разных спиновых состояниях ядер. В простейшем случае, если спии ядра равен 1/2, возможно два ядерных спиновых состояния, В результате одно из этих состояний будет преобладать в продуктах внутриклеточной рекомбинации или внутриклеточного диспропорционирования, а другое — в продуктах внеклеточных превращений свободных радикалов . В магнитном поле, в том числе при записи спектров ЯМР, в одном из продуктов (или в одной группе продуктов) будут преобладать ядра со спинами, ориентированными по направлению магнитного поля, т. е. находящиеся на более низком энергетическом уровне, а в другом продукте (группе продуктов) — ядра, ориентированные против направления поля, т. е, находящиеся на более высоком энергетическом уровне. Таким образом, ядерные [c.174]


    Все переменные, которые необходимо измерять, можно разделить на три группы первая — параметры, характеризующие состояние сред жидкостных и газовых потоков, сред в аппаратах вторая — физиологические параметры третья — параметры, характеризующие состав культуры. К параметрам, характеризующим состав среды, обычно относят температуру, pH, концентрацию растворенного кислорода, скорость перемешивания, интенсивность аэрации, концентрацию солей. Физиологические параметры подразделяются на две группы относящиеся к продуктам метаболизма (количество биомассы и внеклеточных метаболитов) и описывающие состояние метаболизма. Многие из этих переменных могут быть измерены непосредственно в процессе ферментации и использованы для управления. Значения же переменных, которые не могут быть измерены, рассчитываются по значениям других переменных или с использованием косвенных измерений. Уже на этом этапе проявляется важность роли вычислительной техники, заключающейся в формировании надежных корреляций и выполнении необходимого объема расчетов недостающих значений параметров по этим корреляциям. [c.253]

    Функциональная роль отдельных экзонов при рассмотрении случаев альтернативного сплайсинга, возможно, прояснится на примере гена позвоночных, кодирующего полипептидные компоненты целой серии гликопротеидов — фибронектинов, секретируемых клеткой. Некоторые типы фибронектинов, являясь компонентами внеклеточного матрикса, связываются с клеткой и определяют свойства ее поверхности, другие находятся в плазме крови. Разные типы фибронектинов образуются путем альтернативного сплайсинга. Фибронектин плазмы, который не связан с клеточной поверхностью, синтезируется на мРИК, не содержащей одного из экзонов, возможно как раз того, который кодирует участок молекулы белка, отвечающий за связывание с клеткой. [c.183]

    Очевидно, что, хотя точный механизм микробиологической коррозии пока непонятен, микроорганизмы и их внеклеточные метаболиты оказывают существенное влияние на хорошо изученный в других отношениях процесс электрохимического окисления металла. [c.435]

    Между животными клетками, с одной стороны, и растительными и бактериальными — с другой, имеется несколько кардинальных различий. К их числу относятся различия в среде обитания зтих клеток. Клетки животного организма погружены в специально созданную жидкую среду — кровь или лимфу. Эти жидкости в известном смысле подобны по составу древнему Океану, в котором некогда возникла жизнь (часто говорят поэтому, что животные носят в себе частицу моря). Суммарные молярные концентрации низкомолекулярных веществ во внеклеточных жидкостях животного и в цитоплазме близки. Позтому животные клетки находятся в осмотическом равновесии со средой, а их мембраны не подвергаются механическим нагрузкам за счет неравновесной диффузии воды внутрь клетки или из нее. [c.147]

    У животных, лишенных внутреннего скелета (беспозвоночных), выработались те или иные приспособления, выполняющие опорные функции. В частности, у членистоногих, высокоорганизованного типа беспозвоночных, тело покрыто твердой внеклеточной оболочкой (кутикулой членистоногих), выполняющей функции наружного скелета механической защиты организма и опоры для органов движения (общеизвестным примером могут служить панцири ракообразных). По наружному расположению и основной биологической роли кутикула у членистоногих может быть уподоблена клеточной стенке. [c.148]

    Ионы Са2+ играют важную роль в регуляции многих биохимических реакций, протекающих в клетке. В поддержании низкой по сравнению с внеклеточным пространством концентрации ионизированного Са + в цитоплазме принимают участие митохондрии. Эти внутриклеточные органеллы способны аккумулировать большие количества Са + и вместе с тем им принадлежит решающая роль в обеспечении энергетических потребностей клетки в целом. Накопление Са + в митохондриях существенно влияет на активность многих ферментов, локализованных в матриксе и катализирующих отдельные стадии цикла трикарбоновых кислот, окисления кетокислот с разветвленной цепью, липолиза и др. Ярким примером участия Са + в регуляции собственных метаболических функций митохондрий является торможение окислительного фосфорилирования. [c.476]

    А.-противоопухолевое ср-во. Действие основано на гидролизе внеклеточного L-аспарагина. Клетки опухоли, в отличие от нормальных, не способны к образованию собственного (эндогенного) аспарагина и поэтому погибают. [c.209]

    ВЯЖУЩИЕ ЛЕКАРСТВЕННЫЕ СРЕДСТВА, применяют гл. обр. для лечения воспалит, процессов слизистых оболочек и кожи. В месте нанесения В. л. с. происходит коагуляция белков внеклеточной жидкости, находящихся на пов-стн клеток. Образующаяся при этом пленка предохраняет окончания чувствит. нервов от раздражающих воздействий внеш, факторов, благодаря чему В. л. с. оказывают обезболивающее действие, вызывают сужение сосудов, понижают их проницаемость, уменьшают экссудацию, снижают активность нек-рых ферментов. [c.447]

    Учитывая активность микроорганизмов и ее изменения в зависимости от условий среды, на ЭВМ можно имитировать все наблюдаемые в экспериментах особенности изменения концентрации неорганических и органических соединений азота, а также реконструировать динамику биомассы микроорганизмов. Результаты моделирования выявляют чрезвычайно высокую окислительную активность хемоавтотрофов. Очень низкая доля субстрата, включающегося в компоненты клетки (5% и ниже от трансформированного), возможно, свидетельствует об активности внеклеточных ферментов. [c.160]


    В трансформации соединений фосфора, как и азотг., принимают участие организмы практически всех трофических уровней. Растворенные фосфаты (DIP) потребляются водорослями и бактериями и трансформируются в органические соединения — эфиры фосфорной кислоты. Этот органический фосфор живого вещества включается в пищевую цепь на всех уровнях. В процессе жизнедеятельности организмов выделяются фосфаты и растворенные фосфорорганические соединения (DOP), а также образуется костное взвешенное фосфорсодержащее органическое вещество — детритный фосфор (Dp). При автолизе в воду весьма быстро поступает 30—40% DOP, которые утилизируются гетеротрофными бактериями, а также гидролизуются внеклеточной фосфатазой до DIP. Кроме того, DOP, как показано в многочисленных работах, может непосредственно ассимилироваться фитопланктоном. [c.160]

    Особого внимания требуют процедуры отбора проб крови. Образцы следует отбирать в емкости из химически стойкого стекла с соблюдением необходимых мер предосторожности для предотвращения загрязнения тканевой жидкостью и гемолиза существенно, чтобы отбирались пробы только свободно вытекающей крови. На состав образца влияет и положение человека в ходе отбора пробы В положении лежа внеклеточная жидкость устремляется в кровеносные сосуды, разбавляя тем самым белки плазмы крови [90]. При этом изменения концентраций опр еделяемых компонентов могут достигать 20% и давать ошибочные представления. В большинстве случаев рекомендуется хранить пробы при +4 С (для летучих соединений при -20 С). При необходимости хранения проб д]титель-ное время возникает проблема их стабильности вследствие процессов коагуляции. Поскольку негомогенность, вызываемая коагуляцией, может бьтть серьезным источником ошибок, то к пробе крови следует немедленно после отбора добавлять определенное количество антикоагулянта. Естественно, что последний не должен содержать зафязняющих веществ. Надежным способом получения правильных результатов являетс я лио-фильная сушка образцов. [c.194]

    Математик. Продолжаю. Итак, во-вторых, во всех моделях, о которых я уже говорил, в уравнениях фигурируют концентрации взаимодействующих частиц в крови, хотя взаимодействуют они в основном в жидкости межклеточного пространства. Это связано с возможностями измерений - концентрацию частиц в крови врачи юмеряют по результатам биохимических анализов крови, а вот во внеклеточном пространстве это сделать, наверно, намного сложнее. [c.46]

    Читатель. Во всяком случае, чего-то для меня неожиданного. Вы же сами говорили, что о подобии процессов в живых организмах ювестно давно. Вот давайте и посмотрим. Из беседы 1 я узнал, что микродвижения взаимодействующих в наших организмах частиц, т.е. молекул глюкозы, белков, гормонов, а также лимфоцитов, макрофагов и др., благодаря хаотическому перемешиванию их во внеклеточном пространстве нужно рассматривать как случайный процесс. Тут же вы сообщаете мне, гro они очень похожи на броуновское движение, причем роль температуры среды здесь должна играть интенсивность микродвижений частиц в организме, которую вы называете Жизненной Теплотой. [c.176]

    В организме человека натрий в виде его растворимых солей, главным образом хлорида, фосфата и гидрокарбоната, содержится в основном во внеклеточных жидкостях — плазме крови, лимфе, пищеварительных соках. Осмотическое давление плс1змы крови поддерживается на необходимом уровне прежде всего за счет хлорида натрия. [c.386]

    Биологические функции биометаллов и их координационных соединений с биолигандами, другими словами, роль их в живых организмах давно интенсивно изучаются. И тем не менее на сегодня механизмы биологического действия ионов щелочных и щелочноземельных металлов окончательно не выяснены. Одной из важнейших проблем является распределение Ка+ и К+ между внутриклеточным и внеклеточным пространством. Наблюдается избыток во внеклеточном пространстве, К+ — во внутриклеточном. Эти ионы ответственны за передачу нервных импульсов. Мо2+ изменяет структуру РНК Са + играет особую роль в процессах сокращения и расслабления мышц. Ионы железа, меди н ванадия в биокомплексах присоединяют молекулярный кислород и выполняют, таким образом, функцию накопления, хранения и транспорта молекулярного кислорода, необходимого для реализации многих процессов с выделением энергии, а также для синтеза ряда веществ в организме. [c.568]

    Действие локального магнитного поля, создаваемого соседними ядрами, проявляется в существовании так называемого магнитного изотопного эффекта — влияние спина ядра на изотопный состав продуктов внутриклеточной рекомбинации и внеклеточных превращении. Например, при фотохимическом разложении дибензилкето 1а [c.174]

    Ион калия К — основной внутриклеточный ион, в то время как ион натрия Na+ — главный внеклеточный ион их взаимодействие поддерживает жизненно важные процессы в клетках. В организме человека растворимые ооли натрия хлорид, фосфат, гидрокарбонат — входят в состав плазмы крови, лимфы. Ионы магния и кал1)Ция образуют комплексы с нуклеотидами (например, А"Ф), связываясь с фосфатными группами, тем самым участвуют в терморегуляции организма. Кальций —основной элемент для образования и поддержания т.зких структур, как зубы, кости минерал оксиапатит ЗСаз (РО4) 2 Са (ОН) 2 — основа костной ткани. [c.292]

    Кроме того, катионы кальция выступают как акпва-торы ряда внеклеточных ферментов, ослабляют действие на организм токсинов. Магний необходим для деятельности нервно-мышечного аппарата, при его недостатке наблюдается мышечное подергивание, остановка роста конечностей. [c.292]

    В настоящей работе в качестве биокатализаторов исследуемых процессов использовались юютки микроорганизмов, обладающие липолитической или карбоксилэстеразной активностью. Использование клеток может оказаться экономически более целесообразным по сравнению с препаратами ферментов, учитывая, с одной стороны, большие трудности, связанные с концентрированием и выделением внеклеточных и внутриклеточных ферментов и, с другой, - значительным расходом ферментов во время трансформации. [c.81]

    В наших условиях процесс биоокисления отрабатывался в условиях классических аэробных методов культивирования микроорганизмов с внесением в качестве химического окислителя перекиси водорода. Этот агент, как уже отмечалось, используется в ряде технологий химического окисления органических токсикантов и для предобработки стойких к биологическому окислению веществ. Первоначально предполага1ЮСь выяснить, возможно ли достижение таких условий среды культивирования, при которых будет существенным протекание химических процессов окисления фенола, его интермедиатов или каких-либо внеклеточных продуктов перекисью водорода на фоне протекания биологического окисления, и будут ли выдерживать консорциумы фенолдеструкторов достаточно жесткие условия, в данном случае достаточно высокие концентрации перекиси водорода в активной фазе биоокисления. [c.231]

    Высушенные до влажности около 8% дрожжевые клетки находятся в состоянии анафюза. Для сушки наиболее пригодны дрожжи плотной консистенции с содержанием внеклеточной влаги 12—17% при общей влажности 70—71%. Вода в дрожжевой клетке находится в форме адсорбционно и осмотически связанной. Адсорбционно связанная влага прочно удерживается коллоидами клетки и трудно испаряется. Потеря ее в большинстве случаев сопровождается гибелью клетки, поэтому дрожжи высушивают до влажности не. менее 8%. Осмотически связанная влага (влага набухания), так же как и внеклеточная, удаляется без нарушения структуры клетки. [c.365]

    После инъекции меченого серотонина в течение нескольких минут приблизительно половина его претерпевает метаболические превращения и экскретируется, а остаток переходит в отдельные органы, преимущественно в клетки ретикулоэндотелиальной системы селезенки и печени, клетки перегородок легочных альвеол и тромбоциты. В клетки 5-ГТ поступает вместе с внеклеточной жидкостью с помощью активного транспортного механизма, называемого аминовым насосом. Действие этого насоса может быть заблокировано резерпином [5 гек, 81гек, 1970]. [c.59]

    X. п. я. характеризуется знаком Г и коэф. усиления Е. Считается, что Г > О, если в спектрах ЯМР наблюдается усиленное поглощение резонансного поля, а вектор ядерной намагниченности иродуктов р-ции направлен вдоль внеш. магн. поля. Если наблюдается усиленное испускание, а вектор ядерной намагниченности направлен против ноля, то Г <0. Знак Г зависит от того, является ли >юлекула продуктом рекомбинации радикалов в клетке или внеклеточных р-ций (см. Клетки эффект). Величина Е определяется. члектрич. и магн. взаимодействием в радикальных парах, а также подвижностью и временем жизни свободных радикалов. [c.644]

    Одно из неожиданных и удивительных открытий, сделанных в ходе исследований Шёнхеймера (разд. Б), состояло в том, что белки находятся в клетках в стационарном режиме постоянного синтеза и распада. Таким образом, пути синтеза и гидролиза образуют метаболическую петлю (гл. 11, разд. А, 1). Одно из относящихся сюда обобщений заключается в том, что белки, секретируемые во внеклеточную жидкость, часто подвержены более быстрому обороту, чем белки, остающиеся внутри клеток. Вместе с тем внутри клеток некоторые белки распадаются значительно быстрее других, что имеет важное значение для механизмов метаболического контроля. В растениях преобладают относительно низкие скорости оборота белков. [c.94]

    Загадочная, но практически очень важная особенность иммунной системы состоит в том, что в организме могут образовываться антитела против собственных клеток, как это имеет место при аутоиммунных болезнях. К числу таких болезней относится, по-видимому, ревматоидный артрит при этом заболевании сыворотка крови и суставная жидкость содержат комплексы IgG с неизвестными антигенами, причем такие комплексы не встречаются у здоровых лиц. При тяжелом аутоиммунном заболевании, системной красной волчанке, иммунная система часто образует антитела против собственной ДНК больных. Эти антитела атакуют клетки различных тканей, например эритроциты. Хотя клетки иммунной системы обычно отделены от нервных клеток гематоэнцефа-литическим барьером, все же у мышей нетрудно вызвать аллергический энцефаломиелит, при котором антитела повреждают миелиновые оболочки (т. 1, стр. 354), Другим примером таких заболеваний, называемых болезнями иммунных комплексов, служит амилоидоз, характеризующийся отложением белково-углеводных комплексов во внеклеточном пространстве [196]. Было сделано важное наблюдение, что количество аутоантител и отложения амилоида с возрастом увеличиваются. Предполагается, что болезнь иммунных комплексов является основной причиной старения. Огромное значение для медицины имело выявление природы основного заболевания почек—первичного гломе-рулонефрита, который, как показали исследования, обусловлен перекрестной реакцией между мембраной стрептококка и базальными мембранами почечных клубочков. [c.366]

    Производство. Свое название ХС-полимер получил в связи с тем, что это вещество образуется в результате действия поражающих растения бактерий ксантамонас кампестрис на углеводы в подходящей среде. Продукт характеризуют как внеклеточный микробный полисахарид, т. е. полисахарид, образующийся в виде покрытия на каждой бактерии. Ферментационной средой служит получаемая из злаковых зерен -глюкоза, сме-щанная с дрожжами, вторичным кислым фосфатом калия и небольщими количествами необходимых солей. [c.471]

    К прикладной Б. относится разработка ионселек-тивных микроэлектродов для внутриклеточного использования, микроэлектродов для внутриклеточных инъекций электрохимически активных в-в, электрохим. биосенсоров (бактериальные и тканевые электроды) и ионселективных электродов, использующих ионофоры. К медико-биол. приложениям относится изучение внеклеточных электрич. полей и механизмов воздействия внеш. полей и токов на физиол. процессы, включая регенерацию тканей. [c.293]

    Г-пара fiHs OO Hj. Поскольку в Т-S-превращении преим. участв ют пары, содержащие С, кол-во этого изотопа в феннлбензоате, образовавшимся в результате внутриклеточной рекомбинации радикалов, на 23% больше, чем в бензоле, являющимся продуктом внеклеточных превращ. СбН ,- К. э. проявляется также в [том, что продукты, образующиеся при рекомбинации радикалов внутри клетки, и продукты превращения радикалов, вышедших из клетки, имеют противоположные знаки химической поляризации ядер. [c.410]

    Внутриклеточным предшественнико.м К. в организме является проколлаген (синтезируется в осн. в фибробластах, хондроцитах и др. клетках соединит, ткани), молекулы к-рого состоят из трех про-а-цепей с мол. м. 140 тыс.-180 тыс. Эти цепи содержат на N- и С-концевых участках глобулярные (неспирализованные) последовательности (т. наз. пропептиды), отщепляющиеся при внеклеточном созревании К. В С-концевых пропептидах локализованы. межцепьевые связи S—S, стабилизирующие молекулы проколлагена. [c.433]

    Большинство Л. с., попадая после абсорбции в кровь, распределяется по тканям и органам неравномерно и лишь незначит. часть-относительно равномерно. На распределение Л. с. существ, влияние оказывают их физ.-хим. св-ва, сродство к тем или иным тканям, интенсивность кровоснабжения органа и т.д., а также биол. барьеры организма (стенки капилляров, клеточные мембраны, гематоэицефа-лич., гематоофтальмич. и плацентарный барьеры). Л. с., циркулирующие в организме, в разл. степени связываются с белками плазмы крови, образуя клеточные и внеклеточные депо, накапливаются в жировой, костной и др. тканях. [c.584]

    Внеклеточные (секретируемые) белки, а также мн. белки цитоплазматич. мембраны и разл. внутриклеточных ком-партментов (обособленных участков клетки) подвергаются гликозилированию, в результате к-рого образуются гликопротеины. Наиб, сложно организованы маннозосодержащие цепи, присоединенные к полипептидам К-гликозидной связью. Начальная стадия формирования таких цепей протекает котраисляционно по схеме  [c.103]


Смотреть страницы где упоминается термин Внеклеточные: [c.107]    [c.172]    [c.174]    [c.175]    [c.7]    [c.19]    [c.20]    [c.20]    [c.365]    [c.53]    [c.254]    [c.502]    [c.103]   
Технология микробных белковых препаратов аминокислот и жиров (1980) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте