Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неорганическая химия кальций и его соединения

    Настоящая книга представляет собой учебник по второй, специализированной, части курса для студентов строительных институтов и факультетов. Примерно половина ее (главы И, П1, IV) посвящена неорганической химии, причем в соответствии с программой внимание сосредоточено здесь на элементах и соединениях, представляющих интерес для строительного дела. Выделены для более подробного рассмотрения лишь следующие элементы ( и их соединения) магний, кальций, алюминий, углерод, кремний и менее подробно хром, марганец железо и никель. Остальные элементы рассматриваются лишь в общих обзорах по группам периодической системы. [c.3]


    Гей-Люссак значительно способствовал развитию неорганической химии своими ставшими классическими исследованиями галогенов, соединений фосфора, щелочных металлов, открытием бора (почти одновременно с Дэви в 1808 г.) треххлористого фосфора, перекисей натрия, калия, бария и кальция -.  [c.178]

    Эффективный заряд атома, входящего в состав соединения, определяется как алгебраическая сумма его отрицательного электронного заряда и положительного заряда ядра. В настоящее время известно более десятка экспериментальных методов определения значений эффективных зарядов в большинстве своем с точностью (0,1 — 0,3)е, что соизмеримо с точностью вычисления этих зарядов в квантовой химии и теории твердого тела. В табл. 9 приведены данные по эффективным зарядам атомов, которые получены рентгеноспектральным методом д.пя ряда типичных неорганических веществ. Знаком отмечены эффективные заряды на металлических элементах, знаком — на электроотрицательных атомах. К чисто ионным соединениям близки только галогениды щелочных металлов, хотя и для них эффективные заряды не достигают единицы. Все остальные соединения, в том числе галогениды, оксиды, сульфиды кальция и магния, являются только частично ионными. Кроме того, эффективные заряды на типических электроотрицательных атомах (кислород, сера) почти не превосходят 1, в то время как заряды металлических элементов (кальций, алюминий) могут быть заметно больше единицы. Это объясняется тем, что энергия присоединения двух электронов к кислороду и сере (сродство к электрону второго порядка) отрица- [c.63]

    Прежде всего зададимся вопросом что такое вода В дальнейшем мы рассмотрим этот вопрос подробнее, но я хотел бы сразу уточнить, что вода в ее естественном состоянии — это сложный раствор огромного количества веществ, как полезных, так и вредных, среда обитания водных растений и живых существ, от микроорганизмов до китов, тюленей и акул. Разумеется, в пресных водоемах, из которых мы получаем питьевую воду, акулу, а иногда даже и карася не встретишь, а вот вирусы, бактерии и различные органические и неорганические соединения могут в ней присутствовать. Ядов, патогенных микробов и вредной химии в питьевой воде быть не должно, а полезные микроэлементы, соли натрия, калия, кальция и магния должны [c.10]


    Качественный элементный анализ имел всегда в органической химии меньшее значение, чем в неорганической, тем более что методы первого часто сводились к методам второго. Так, ддя суждения присутствии элементов, которые в своих неорганических соединениях нелетучи, рекомендовалось высушивать органические вещества, а затем превращать их в золу. Эта зола может содержать, как полагали в 50-х годах прошлого века, кальций, магний, железо, натрий, калий в виде окислов или в соединении с кислотами угольной, хлористоводородной, серной, фосфорной, а также кремнезем, анализ которых рекомендовалось проводить общеупотребительными способами [16, с. 469]. [c.289]

    В-пятых, данный справочник содержит весь фактологический материал школьного курса химии (раздел 10). Охарактеризованы химические свойства и получение неорганических веществ для металлов (натрий, калий, кальций, алюминий, железо) и неметаллов (водород, хлор, кислород, сера, азот, фосфор, углерод, кремний). Приведены необходимые и достаточные наборы уравнений реакций с участием простых веществ, оксидов, гидроксидов, солей и бинарных соединений указанных металлов и неметаллов. Отдельно выделены способы синтеза этих веществ в лаборатории и в промышленности, качественные реакции их обнаружения. [c.6]

    В заключение необходимо отметить, что ни одна из существующих теорий не могла увязать процессы синтеза цемента и его твердения и установить причину накопления в веществе комплекса свойств, определяемого как способность к гидратационному твердению. В связи с этим цемент понимали как некоторое неустойчивое (метаста-бильное, лабильное, мутабильное) соединение, вяжущие свойства которого объясняются нерегулярной дефектной структурой, причем основное внимание уделялось иону кальция — извести [112, 440, 452, 455, 459]. В большинстве работ, посвященных химии и физико-химии цементов, говорится о механизме твердения (о механизме гидратационного твердения) неорганического, вяжущего вещества. [c.131]

    Немецкий химик Фридрих Август Кекуле фон Страдонитц (1829—1886) , которого обычно называют Кекуле, сделал верный вывод. В учебнике, опубликованном им в 1861 г., Кекуле определил органическую химию как химию соединений углерода. Развивая эту мысль, можно определить неорганическую химию как химию соединений, не содержащих углерод. Это определение получило широкое распространение. Правда, несколько соединений углерода, в том числе диоксид углерода и карбонат кальция, скорее следуем считать типичными неорганическими соединениями, чем типичными органическими. Такие соединения углерода обычно рассматриваются в трудах по неорганической химии. [c.73]

    Научные работы в области химии относятся к неорганической химии и электрохимии, основоположником которой он является. Открыл (1799) опьяняющее и обезболивающее действие закиси азота и определил ее состав. Изучал (1800) электролиз воды и подтвердил факт разложения ее на водород и кислород. Выдвинул (1807) электрохимическую теорию химического сродства, согласно которой при образовании химического соединения происходит взаимная нейтрализация, или выравнивание, электрических зарядов, присущих соединяющимся простым телам при этом чем больше разность этих зарядов, тем прочнее соединение. Путем электролиза солей и щелочей получил (1808) калий, натрий, барий, кальций, амальгаму стронция и магний. Независимо от Ж. Л. Гей-Люссака и Л. Ж- Тенара открыл (1808) бор нагреванием борной кислоты. Подтвердил (1810) эле,меитарную природу хлора. Независимо от П- Л. Дюлонга создал (1815) водородную теорию кислот, Одно-времеино с Гей-Люссаком доказал (1813—1814) элементарную природу иода. Сконструировал (1815) безопасную рудничную лампу. Открыл (1817—1820) каталитическое действие платины и палладия, Получил (1818) металлический литий. [c.180]

    В настоящее время наблюдается мощный интеллектуальный подъем в неорганической химии, который сильнее всего затронул те ее области, которые лежат на стыке с соседними дисциплинами химию металлоорганических и бионеорганических соединений, химию твердого тела, биогеохимию и др. Возрастает, в частности, уверенность ученых в том, что неорганические элементы играют важную роль в живых системах. Живые существа вовсе не являются чисто органическими. Они весьма чувствительны к ионам металлов почти всей Периодической системы Д.И. Менделеева. Некоторые ионы играют важнейшую роль в таких жизненно важных процессах, как связывание и транспорт кислорода (железо в гемоглобине), поглощение и конверсия солнечной энергии (магний в хлорофилле, марганец в фотосистеме II, железо в ферродоксине, медь во фта-лоцианине), передача электрических импульсов между клетками (кальций, калий в нервных клетках), мышечное сокращение (кальций), ферментативный катализ (кобальт в витамине В12). Это привело к взрыву творческой активности ученых в области неорганической химии биосистем. Мы начинаем изучать строение ближайшего и дальнего окружения атомов металлов в биосистемах и учимся понимать, как это окружение позволяет атому металла с такой высокой чувствительностью реагировать на изменение pH, давление кислорода, присутствие доноров или акцепторов электронов. [c.158]


    В виде кристаллогидратов известны нитраты многих металлов, однако безводных нитратов до последних лет получено сравнительно мало. Хорошо изучены безводные нитраты всех ш,елочных металлов. Безводные нитраты металлов второй группы периодической системы — кальция, стронция и бария — легко можно получить, удаляя воду из кристаллогидратов. Известны также безводные нитраты серебра, свинца и таллия(1). Однако безводные нитраты большинства металлов не были выделены до самого последнего времени. Если говорить о методах синтеза, главным препятствием было настойчивое использование водных систем. Попытки удалить воду из кристаллогидратов обычно приводили к гидролизу с образованием основных нитратов, гидроокисей или окислов и с выделением азотной кислоты. Поэтому обычно считали, что безводные нитраты, особенно нитраты переходных элементов, должны быть неустойчивыми соединениями. В последнее время многие такие соединения были синтезированы, и оказалось, что они обладают высокой термической устойчивостью. Успешный синтез этих соединений является результатом более широкого использования неводных растворителей в препаративной неорганической химии. [c.156]

    Отделение структурной и неорганической химии I Заведующий D. А. Long Направление научных исследований химия переходных металлов и их комплексообразующие свойства фотохимия хлорофилла и ка-ротиноидов кинетика гидролиза пептидов структурные свойства расплавленных фосфатов и силикатов молекулярная спектроскопия неорганическая и аналитическая химия соединений низковалентного ниобия неорганические соединения углерода осаждение карбидов в аустенитных нержавеющих сталях кристаллическая структура фосфатов кальция фотоэмиссия металлов и полупроводников. [c.253]

    Эффективный заряд атома, входящего в состав соединения, определяется как алгебраическая сумма его отрицательного электрон-мого заряда и положительного заряда ядра. В настоящее время известно более десятка экспериментальных методов определения значений эффективных зарядов в большинстве своем с точностью 0,1 — Д,3 е, что соизмеримо с точностью вычисления этих зарядов в квантовой химии и теории твердого тела. В табл. 10 приведены данные по эффективным зарядам атомов, которые получены рентгеноспектральным методом для ряда типичных неорганических веществ. Знако.м -Ь отмечены эффективные заряды на металлических элементах, знаком — на электроотрицательных атомах. К чисто ионным соединениям близки только галогениды щелочных металлов, хотя и для них эффективные заряды не достигают единицы. Все остальные соединения, в том числе галогениды, оксиды, сульфиды кальция и магния, являются только частично ионными. Кроме того, эффективные заряды на типических электроотрицательных атомах (кислород, сера) почти не превосходят 1, в то время как заряды металлических элементов (кальций, алюминий) могут быть заметно больше единицы. Это объясняется тем, что энергия присоединения двух электронов к кислороду и сере (сродство к электрону второго порядка) отрицательна. Расчеты показывают, что сродство к электрону второго порядка для кислорода равно —732, а для серы составляет —334 кДж/моль. Значит, ионы типа и 5 не существуют, и все оксиды, сульфиды, независимо от активности металлов, не относятся к ионным соединениям. Если двухзарядные анионы в действительности не -существуют, тем более нереальны многозарядные одноатомные отрицательные ионы. [c.84]

    Основные научные работы относятся к неорганической и аналитической химии. Открыл (1789) уран и цирконий. Выделил (1795) из минерала рутила окисел нового металла, который назвал титаном установил (1797), что титан и обнаруженный (1791) У. Грегором металл менаканит идентичны. Независимо от Я. Я. Берцелиуса и шведского химика В Г. Гизин-гера открыл (1803) церий. Получил новые данные о соединениях стронция (1793), хрома (1797), теллура (1798). Исследовал процессы горения и обжига металлов, в результате чего стал сторонником кислородной теории Лавуазье. Повторил (1792) на заседании Берлинской АН главнейшие опыты Лавуазье, чем способствовал признанию его воззрений в Германии. Установил, что в железных метеоритах постоянным спутником железа является никель. Изучая лейциты, обнаружил, что они содержат калий тем самым показал впервые, что калий встречается не только в растениях, но и в минералах. Открыл (1798) явление полиморфизма, установив, что минералы кальцит и арагонит имеют одинаковый химический состав — СаСОз. Работы Клапрота были изданы под общим названием К химическому познанию минеральных тел (т. 1—5, 1795-1810). [c.238]

    ЗОЛА — обожженная минеральная (неорганическая) часть топлива, образующаяся при полном его сгорании. Содержание 3. (зольность) составляет (в %) в бурых углях — 10—15, каменных углях — 3—40, антраците — 2—30, горючих сланцах — 50—80, топливном торфе — 2—30, дровах — 0,5—1,5, растительном топливо др. видов — 3—5, мазуте — 0,15—0,2. В зависимости от вида подготовки и условий сжигания топлива различают 3. пылевидного и слоевого сжигания. Твердое минер, топливо (уголь, сланцы) сжигают обычно после дробления и помола, реже — в естественном виде (в кусках) без предварительной обработки. На тепловых электростанциях при сжигании угля в пылевидном состоянии конгломераты различных соединений, образующиеся из его минер. части, выделяются в форме пылевидной массы. Мелкие и легкие частицы (размером от 5 до 100 мкм), содержащиеся в 3. в количестве до 80—85%, уносятся из топок котло-агрегатов дымовыми газами, образуя золу-унос, более крупные частицы оседают на под топки, сплавляются в кусковые шлаки или стекловидную шлаковую массу, к-рая подвергается затем грануляции. По хим. составу зола-унос минер, топлива на 85—90% состоит из окислов кремния, алюминия, железа (окисного и закисного), кальция, магния (табл.). В зависимости от вида углей, условш их сжигания в золе-уносе содержится от 0,5 до 20% и более [c.460]

    Число органических соединений, получаемых синтетическим путем, из года в год увеличивалось, заполняя кажущуюся пропасть между органической и неорганической природой. Еще при жизии Ф, Энгельса (умер в 1895 г.) химиками было осуществлено много различных синтезов. В частности, были полученны ацетилен из карбида кальция (в 1863 г.), ализарин (в 1868 г.), индиго (в 1870 г.), кумарин (в 1875 г.), хинолин (в 1880 г.), ацетальде-гид из ацетилена (в 1881 г.), синтетические полипептиды (в 1882 г.), Конго красный (в 1884 г.), осуществлен первый синтез алкалоидов (в 1886 г.), синтез глюкозы, фруктозы и маинозы (1890 г.) и т. д. Эти синтезы окончательно разгромили виталистические воззрения. Стало всем ясно, что биосинтез в растительных и животных организмах проходит не благодаря жизненной силе ,, а на основе законов химии. [c.6]

    Научным направлением работ Лаборатории гетерогенных равновесий, созданной и руководимой в течение 20 лет чл.-корр. АН СССР Н. А. То-роповым, является изучение фазовых равновесий в поликомпонентных силикатных и им подобных системах в широком диапазоне температур и концентраций. Изучению фазовых равновесий в системах сопутствует исследование и решение весьма широкого круга вопросов, таких как синтез новых соединений в виде П0.ЛИ- и монокристаллов и их твердых растворов с установлением последовательности их кристаллохимических превраш,ений (полиморфизм, изоморфизм, изоструктурность, изотипность), исследование процессов кристаллизации, кинетики и механизма кристаллообразования, определение взаимосвязи между строением, фазовым составом и свойствами вещества. Исследования лаборатории направлены на дальнейшее развитие общих положений физической химии, кристаллохимии, минералогии силикатов и их аналогов и составляют научную основу одного из разделов неорганического материаловедения. Кроме того, объекты исследования — силикаты, алюминаты, ниобаты, германаты р. з. э., кальция и стронция — являются составной частью керамических, лазерных, люминофорных и других материалов, поэтому результаты исследования представляют несомненный практический интерес для современной техники. Среди окисных соединений особое место занимают силикаты р. з. э. и их генетические разновидности. Это новый класс химических соединений, который систематически и всесторонне стал изучаться в Институте химии силикатов. [c.21]

    При написании формул кислородсодержащих неорганических соединений иногда, в частности в химии неорганических вяжущих веществ, оперируют не молекулярной формулой, а используют окисную форму записи, с помощью которой, например, ортосиликат кальция СагЗ] пишется как 2Са0-5102. Такая форма записи имеет своё начало от дуалистической системы Берцелиуса (1812— 1818). Химия давно оставила его прогрессивные в свое время теоретические воззрения, однако формулы ряда минералов и других неорганических веществ до сих пор иногда пишут как слагающиеся из соответствующих окислов, что представляет некоторые практические удобства, но может существенно отражаться на интерпретации результатов. При рассмотрении силикатов с позиций химии полимеров окисная форма записи мало приемлема. [c.78]


Смотреть страницы где упоминается термин Неорганическая химия кальций и его соединения: [c.533]    [c.41]    [c.482]    [c.705]    [c.714]    [c.554]    [c.390]    [c.390]    [c.275]    [c.277]    [c.293]    [c.104]    [c.238]    [c.6]    [c.136]   
Научно-исследовательские организации в области химии США, Англии, Италии, ФРГ, Франции и Японии (1971) -- [ c.45 , c.87 , c.104 , c.179 ]




ПОИСК





Смотрите так же термины и статьи:

Кальций соединения

Химия неорганическая



© 2024 chem21.info Реклама на сайте