Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейтроны ускорители

    Изотопы находят широкое применение в научных исследованиях, где они используются как меченые атомы для выяснения механизма химических и, в частности, биохимических, процессов. Для этих целей необходимы значительные количества изотопов. Стабильные изотопы получают выделением из природных элементов, а радиоактивные в большинстве случаев с помощью ядерных реакций, которые осуществляются искусственно в результате действия на подходящие элементы нейтронного излучения ядерных реакторов или мощных потоков частиц с высокими энергиями, например дейтронов (ядер дейтерия й), создаваемых ускорителями. Один и тот же изотоп можно получить различными путями. Так, например, для получения радиоактивных изотопов водорода, углерода, фосфора и серы, наиболее широко используемых в практике биологических исследований, осуществляются следующие ядерные реакции  [c.26]


    Атомы. Последним известным в настоящее время пределом делимости вещества являются элементарные частицы — протоны, нейтроны и др. За последние десятилетия благодаря появлению мощных ускорителей и тщательному исследованию состава космических лучей стало известно около 200 видов элементарных частиц и рассматривается вопрос об их строении, в связи с чем вместо термина элементарные частицы иногда пользуются выражением фундаментальные частицы . Атомами называют наиболее простые электрически нейтральные системы, состоящие из элементарных частиц. Более сложные системы — молекулы — состоят из нескольких атомов. Химикам приходится иметь дело с атомами, образующими вещества, — атомами химических элементов они представляют наименьшие частицы химических элементов, являющиеся носителями их химических свойств. [c.5]

    Ядра некоторых изотопов обладают свойством радиоактивности. Большинство таких ядер приобретает устойчивость в результате испускания альфа-частиц ( Не), бета-частиц (. е) и (или) гамма-лучей ( у). Некоторые ядра распадаются в результате испускания позитрона ( е) или электронного захвата. Одним из факторов, определяющих устойчивость ядра, является его ней-тронно-протонное отношение. Большое значение при определении устойчивости ядра имеет равенство в нем общего количества нуклонов одному из магических чисел, а также наличие четного числа протонов и нейтронов. Ядерные превращения можно вызвать бомбардировкой ядер заряженными частицами, ускоренными при помощи ускорителей, или нейтронами в ядерном реакторе. [c.274]

    Т. е. по числу получаемых нейтронов ускоритель дейтонов (при токе.. на выходе в 1 ма) эквивалентен На-ЬВе источнику, содержащему 50 г радия.. [c.161]

    Для осуществления ядерной реакции бомбардирующая частица должна обладать большой энергией. Разработаны и созданы специальные установки (ускорители), позволяющие сообщать заряженным частицам огромную энергию. Для проведения ядерных реакций используются также потоки нейтронов, образующиеся при работе атомных реакторов. Применение этих мощных средств воздействия на атомы позволило осуществить большое число ядерных превращений. [c.95]

    Пока что в роли источников нейтронов ускорители электронов выступают эпизодически. По интенсивности нейтронных потоков они не уступают нейтронным генераторам. Электронные ускорители могут работать длительное время без падения интенсивности, однако энергетические затраты на производство нейтронов много больше, чем у нейтронных генераторов. Энергетическое распределение получающихся нейтронов оказывается сплошным, причем максимальная энергия нейтронов соответствует разности между максимальной энергией тормозного излучения и величиной порога используемой фотоядерной реакции. Из этого обстоятельства вытекает принципиальная возможность регулирования спектра нейтронов путем изменения энергии ускорителя. [c.70]


    Кроме того, в качестве излучений высокой энергии можно использовать протоны, дейтоны, а-частицы, ускоренные в специальных ускорителях (циклотрон, генератор Ван-де-Граафа). Пучки быстрых электронов можно получать, используя линейные ускорители, бетатроны или радиоактивные изотопы некоторых элементов (например, " Зг, Сз и др.). Источником квантов больших энергий, кроме уже указанных искусственно получаемых радиоактивных элементов, могут служить мощные рентгеновские трубки для получения у-излучений можно также использовать торможение быстрых электронов, полученных в ускорителях (бетатроне, линейном ускорителе электронов, генераторе Ван-де-Граафа). Источниками нейтронов, кроме атомных реакторов, могут быть радио-бериллиевые и полоний-берил-лиевые источники или специальные ускорители нейтронов. [c.258]

    Радиоактивационный анализ основан на образовании в определяемом веществе искусственных радиоактивных изотопов и последующем измерении их радиоактивности. Искусственные радиоактивные изотопы получаются в результате ядерной реакции при облучении исследуемого образца в реакторе, на ускорителе или с помощью другого источника ядер ных частиц (нейтронов, протонов, Не и др.). [c.542]

    ТРИТОН — ядро атома трития, обозначается Н, или 1. Состоит из одного протона и двух нейтронов. Масса 3,017. Используется как бомбардирующая частица в ускорителях заряженных частиц. [c.254]

    В качестве метки используют как готовые радиоизотопы, поставляемые в большом наборе промышленностью, так и радиоизотопы, возникающие непосредственно в исследуемом образце при его облучении нейтронами в ядерном реакторе или бомбардировке заряженными частицами на ускорителях. Применяя готовые изотопы, легче обеспечить необходимую радиохимическую чистоту метки и при совместном присутствии в образце нескольких меток - оптимальное для анализа отношение их концентраций. [c.206]

    Источники нейтронов, основанные на радиации естественных или искусственных радиоактивных изотопов, обычно дают малые потоки нейтронов и, как правило, с небольшой энергией. Ускорители дают возможность реализовать более мощные излучатели нейтронов. Для получения ней- [c.80]

    Перечисленные выше ускорители - аппараты с выведенным пучком заряженных частиц. Но в самом аппарате за счет заряженных частиц можно получить нейтроны или рентгеновское излучение. Нейтроны получают в нейтронных генераторах при бомбардировке ускоренными протонами или дейтронами мишеней из соед., содержащих [c.256]

    Для получения нейтронов используются два процесса а) бомбардировка ядер в ускорителях и б) расщепление в реакторе. [c.300]

    Тритий — радиоактивный изотоп водорода с массовым числом 3, ядро которого состоит из одного протона и двух нейтронов (символ Т, или Н), период полураспада 7 i/j= 12 лет, при распаде испускает Р-частицы. Незначительные количества Т. образуются в результате ядерных процессов. В промышленности Т. получают, облучая литий медленными нейтронами. Соединение Т. с кислородом (сверхтяжелая вода) получается при окислении трития в электрическом разряде. Известен также и ряд органических соединений Т. По своим химическим свойствам Т. отличается от обычного водорода неодинаковой скоростью реакций, вызванной разницей в массах. Т. используют как горючее в термоядерных бомбах и в ядерной энергетике. Кроме того, он применяется как радиоактивная метка в различных исследованиях (химических, биологических и др.), с помощью Т. можно определить происхождение осадков (дождей), узнать возраст метеорита или выдержанного вина и др. Тритон — ядро атома трития, обозначается Н. Состоит из одного протона и двух нейтронов. Масса 3,01646. Используется как бомбардирующая частица в ускорителях заряженных частиц, [c.138]

    Определить содержание радия в радийбериллиевом источнике, если его поток нейтронов эквивалентен потоку нейтронов ускорителя с энергией дейтонов 0,1, 0,2 и 1,0 Мэв с интенсивностью 100 мка. [c.80]

    При умеренных температурах ионы могут образовываться из молекул газа под действием частиц высоких энергий или жесткого электромагнитного излучения. Это происходит, -например, при прохождении через газ а- и (З-частиц и у-излучения при радиоактивном распаде, при облучении рентгеновскими луча ,и1, при действии пучка электронов или других частиц, полученного в ускорителях элементарных частиц, при действии нейтронов в ядерных реакторах, при прохожденш через газ электрического разряда. В частности, ионизацией газа сопровождается действие жесткой солнечной радиации и космических лучей на верхние слои атмосферы н действие газовых разрядов на нижние слои атмосферы. [c.27]

    В 1940 г. американские ученые Сиборг и Макмиллан изучали действие нейтронов на препарат (уранат аммония). Нейтроны получали на ускорителе действием ускоренных дейтонов на бериллий. Оказалось, что при облучении (нейтронами из Ве) ураната аммония получается в 1000 раз больше мощный поток нейтронов, чем исходный. Макмиллан с помощью совсем еще молодого сотрудника Абельсона определил, что получающийся новый элемент имел 7i/2=2,35 суток. Это был эзЫр (по названию планеты Нептуний, следующей за Ураном в солнечной системе). [c.226]


    Хан и Штрассман имели в своих опытах, поставленных одновременно, тот же результат, но у них не было достаточно мощного ускорителя, необходимого для получения интенсивного потока нейтронов, и поэтому их наблюдения было трудно истолковать достаточно определенно. [c.226]

    Кюрий и кюриды — элементы второй семерки актиноидов. Получение новых тяжелых элементов представляет собой сложную задачу, причем сложности возрастают по мере увеличения атомного номера элемента. Это объясняется тремя основными причинами. Во-первых, концентрация исходных элементов, ядра которых необходимо подвергать бомбардировке, очень невелика и, соответственно, вероятность попадания частицы-снаряда в ядро-мишень также мала. Во-вторых, все тяжелые элементы склонны к реакции деления под воздействием нейтронов, что уменьшает выход ожидаемого элемента. В-третьих, для получения тяжелых трансурановых элементов возникает необходимость использования в качестве бомбардирующ,их частиц не только нейтронов и ядер гелия, но и более массивных ядер (углерода, азота и т. д.), а их разгон до необходимых энергий, в свою очередь, требует создания все более мощных ускорителей. К тому же период полураспада новых элементов становится все меньше, что также осложняет их выделение, идентификацию и изучение свойств. Все это и привело к тому, что за первые 24 года (1940—1964) были синтезированы 12 тяжелых элементов, а за последнее время — только 4. [c.446]

    Еще более сильное действие на молекулы оказывают ядерные излучения (т лучи, протоны, нейтроны и др.) и рентгеновы лучи. Раздел химии, занимающийся вопросами химического действия этих излучений, называется радиационной химией. В отличие от нее радиохимией называют химию радиоактивных элементов, в частности, химию меченых атомов . Радиационная химия развивается в связи с развитием ядерной физико-химии и ядерной энергетики. Атомные реакторы, ускорители частиц, радиоактивные изотопы дают разнообразные очень [c.46]

    Еще более сильное действие на молекулы оказывают ядерные излучения (у-излучение, протоны, нейтроны и др.) и рентгеновское излучение. Раздел химии, занимающийся вопросами химического действия этих излучений, называется радиационной химией. В отличие от нее радиохимией называют химию радиоактивных элементов, в частности химию меченых атомов . Радиационная химия развивается в связи с развитием ядернсй физико-химии и ядерной энергетики. Атомные реакторы, ускорители частиц, радиоактивные изотопы дают разнообразные очень мощные потоки частиц, которыми все больше начинают пользоваться для осуществления химических реакций. Эти излучения рвут связи, выбивают отдельные атомы, порождают радикалы и ионы, а затем идут перегруппировки связей и возникают новые. Например, вместо двухстадийного обычного химического получения фенола из бензола можно получать это важнейшее вещество из бензола и воды в одностадийном процессе с использованием ядерных излучений. При этом из воды получаются радикалы ОН и Н и бензол далее реагирует по схеме [c.57]

    Достоинства А. а, высокая специфичность, во. змож-ность одноврем. определения ряда примесей в одной навеске образца, отсутствие поправки контрольного опыта, т. к. все операции, в т. ч. травление образца для удаления поверхностных загрязнений, проводят после облучения. Недостатки относительно малая доступность источников активирующих частиц и 7-квантов (ядерных реакторов, циклотронов, нейтронных генераторов, линейных ускорителей и т. п.), радиац. опасность. Осн. области применения А. а. анализ чистых в-в, в т. ч. материалов, применяемых в радиоэлектронике, атомной энергетике, авиационной пром-сти и др. анализ геол. объектов экологич. исследования медицина. [c.18]

    АКТИНОИДЫ (актиниды), семейство иэ 14 радиоакт. элем. 7 периода периодич. сист. торий Th, протактиний Ра, ураи и, нептуний Ыр, плутоний Ри, америций Ат, кюрий m, берклий Вк, калифорний f, эйнштейний E.s, фермий Fm, менделевий Md, нобелий No н лоуренсий Lr. Наиб, долгоживущие изотопы имеют Th и U. Эти элем, встречаются в прир. минералах, преим. в рассеянном состоянии. Кроме того, в природе встречаются изотопы Ра и следовые кол-ва изотопов Np н Ри, к-рые обра.зуются в ядерных р-циях изотопов U с нейтронами. Другие А. в природе не обнаружены они получ. облучением U и нек-рых трансурановых элем, в ядерных реакторах нейтронами или на ускорителях ядрами легких элементов. Ми. изотопы образуются при подземных ядерных взрывах и м. б. выделены иэ грунтов. Серебристо-белые металлы очень высокой плотности (до 20,5 г/см ). Наиб, легкоплавки Np н Ри ((пл ок. 640 °С). Для остальных А. до Es включительно пл > 850 С. Fm, Md, No и Lr не получ. в металлич. состоянин. А.— очень сильные электроположит. элементы легко реаг. с Нз, О2, N2, S, галогенами и др. Однако в компактном состоянин сравнительно устойчивы на воздухе. В мелкодисперсной форме пирофорны. [c.20]

    НИОБИЕВЫЕ СПЛАВЫ, более жаропрочны, чем никелевые и кобальтовые (предел прочности Ов 450—500 МПа при 1100 °С), и более пластичны, чем вольфрамовые и молибденовые, однако выше 400 °С интенсивно окисл. на воздухе (использ. только с защитными покрытиями). Заметно превосходят хастеллой по стойкости в к-тах, не обладающих окислит, св-вами (НгЗО , НС1 и др.), обладают малым поглощением тепловых нейтронов. Нек-рые сплавы с Zr, Sn или Ti имеют сверхпроводящие св-ва. Примеп. для изготовления деталей самолетов и ракет, ядерных реакторов, ускорителей элементарных частиц. [c.380]

    Источники излучения, применяемые в радиационной химии, весьма разнообразны. Сюда относится многочисленная по типам конструкции и мощности рентгеновская техника, ускорители электронов, протонов, естественные либо искусственные радиоактивные элементы, в частности,. а-из-лучатели, источники нейтронов и т, п. Широкие воз- [c.196]

    Радиационная Д. предусматривает радиоактивное облучение объектов рентгеновскими, а-, Р- и 7-лучами, а также нейтронами. Источники излучений-рентгеновские аппараты, радиоактивные изотопы, линейные ускорители, бетатроны, микротроны. Радиац. изображение дефекта преобразуют в радиографич. снимок (радиография), электрич. сигнал (радиометрия) или световое изображение на выходном экране радиационно-оптич. преобразователя или прибора (радиац. интроскопия, радиоскопия). Развивается радиац. вычислит, томография, к-рая позволяет с помощью ЭВМ и сканирующих пов-сть объекта сфокусир. рентгеновских лучей получать его послойное изображение. Метод обеспечивает выявление дефектов с чувствительностью [c.29]

    НЕЙТРбННЫЕ ИСТбЧНИКИ, устройства или в-ва, излучающие нейтроны. Самые мощные И. и.-ядерные реакторы, испускающие до 5-10 нейтронов в секунду с 1 см активной зоны реактора. Благодаря наличию замедлителей обычно получают значит, кол-во в потоке тепловых нейтронов с энергией ок. 0,06 эВ. В т. наз. нейтронных генерато-рах-электростатич. ускорителях заряженных частиц-получают почти моноэнергетич. потоки нейтронов в интервале энергий от 1,5 до 20 МэВ с интенсивностью до 10 ° нейтрон/с в результате р-ции -> Не-f п. [c.206]

    Пром. установки создаются с ускорителями электронов (энергия 0,5-3 МэВ, мощность до 100 кВт) и с долгоживущими радионуклидными источниками у-излучения мощностью до 50кВт (активность нуклидов ок. 11-10 Бк для Со и ок. 44-10 Бк для Сз). Установки с наиб, мощными (до 10 кВт) источниками у-излучения м. б. реализованы путем создания при энергетич. ядерных реакторах (при обязат. условии обеспечения их надежности и безопасности) т. наз. радиац. контуров, в к-рых циркулируют рабочие в-ва, делящиеся (ядерное топливо) или неделящиеся (сплавы 1п-Са Na) под действием нейтронов. При прохождении рабочих в-в через ядерный реактор в них генерируются радионуклиды (в т. ч., что особенно важно, короткоживущие) с у-излучением, к-рое используется для инициирования и проведения радиац.-хим. процессов при прохождении рабочих в-в через радиац.-хим. установку. Такое у-излучение в 5-10 раз дешевле, чем у-излучение наиб, распространенного радионуклида Со. Благодаря комплексному использованию (для целей энергетики и РХТ) ядерного горючего значительно уменьшается стоимость тепла, генерируемого ядерным реактором, и, следовательно, удешевляется обычная хим. продукция, получаемая при использовании этого тепла или электроэнергии АЭС. [c.152]

    Применение. Т. в.- лучший замедлитель нейтронов коэф. замедления нейтронов 5700, поперечное сечение захвата тепловых нейтронов 0,46 10 м (для веды соответствующие величины 61 и 0,33 10 м ). Поэтому Т. в. применяют гл. обр. в качестве замедлителя нейтронов и теплоносителя в энергетич. и исследовательских ядерных реакторах на тепловых нейтронах (тяжеловодные реакторы). Перспективно использование Т. в. как источника 02 для термоядерного синтеза. Т. в.- источник дейтронов в ускорителях частиц, изотопный шщикатор, р-ритель в спектроскопии ЯМР. [c.21]

    Зарождение Я. х. связано с открытием радиоактивности урана (А. Беккерель, 1896), ТЬ и продуктов его распада -новых, радиоактивных элементов Ро и ка (М. Склодовская-Кюри и П. Кюри, 1898). Дальнейшее развитие Я. х. было определено открытием искусств, адерного превращения (Э. Резерфорд, 1919), изомерии атомных адер естеств. радионуклидов (О. Ган, 1921) и изомерии искусств, атомных ядер (И. В. Курчатов и др., 1935), деления адер и под действием нейтронов (О. Ган, Ф. Штрасман, 1938), спонтанного деления и (Г. Н. Флёров и К. А. Петржак, 1940). Создание ядерных реакторов (Э. Ферми, 1942) и ускорителей частиц (Дк. Кокрофт и Э. Уолтон, 1932) открьио возможность изучения процессов, происходящих при взаимод. частиц высокой энергии со сложными ядрами, позволило синтезировать искусств. радионуклиды и новые элементы. [c.513]

    В случае использования в качестве бомбардирующих частиц протонов, дейтронов и др., несущих положит, зарад, бомбардирующую частицу ускоряют до высоких энергай (от десятков МэВ до сотен ГэВ), используя разл. ускорители. -2 0 необходимо для того, чтобы заряженная частица могла преодолеть кулоновский потенциальный барьер и попасть в облучаемое адро. При об.15чении мишеней положительно заряженными частицами наиб, выходы Я. р. достигаются при использовании дейтронов. Связано это с тем, что энергия связи протона и нейтрона в дейтроне относительно мала, и соотв., велико расстояние между протоном и нейтроном. [c.515]

    При использовании в качестве бомбардирующих частиц дейтронов в облучаемое адро часто проникает только один нуклон - протон или нейтрон, второй нуклон адра дейтрона летит дальше, обычно в том же направлении, что и налетающий дейтрон. Высокие эффективные сечения могут достигаться при проведении Я. р. между дейтронами и легкими адрами при сравнительно низких энергиях налетающих частиц (1-10 МэВ). Поэтому Я. р. с участием дейтронов можно осуществить не только при использовании ускоренных на ускорителе дейтронов, но и путем нагревания смеси взаимодействующих адер до т-ры ок. 10 К. Такие Я. р. называют термоядерными. В природных условиях они протекают лишь в недрах звезд. На Земле термоадерные р-ции с участием дейтерия, дейтерия и трития, дейтерия и лития и щз. осуществлены при взрывах термоадерных (водородных) шмб. [c.515]

    Радиоактивньш металл, наиболее долгоживущий изотоп Рш (период полураспада 100,5 дня). Химический аналог Ег. В растворе присутствует в виде иона Рш , который восстанавливается до иона Рш при действии атомного водорода. Другие химические свойства не изучены. В микрограммовых количествах Pm синтезирован при бомбардировке Th, U или Ри ядрами Ne, О или С на ускорителе, а также при облучении f потоком нейтронов в ядерном реакторе. [c.350]

    В радиационно-химических установках используют долгоживущие изотопные источники излучения (чаще всего Со мощностью до 50 кВт) и ускорители электронов (энергия 0,5—1,5 МэВ, мощность до 100 кВт). Перспективные источники — радиационные контуры, которые позволяют комплексно использовать ядерное горючее. Радиационный контур состоит из генератора активности, облучателя радиационно-химической установки, коммуникаций, соединяющих их, и устройств для перемещения по контуру рабочего вещества. В генераторе, расположенном вблизи активной зоны ядерного реактора, рабочее вещество захватывает нейтроны с образованием короткоживущих радионуклидов, у-из-лучение которых затем используется в облучателе. В опытных радиационных контурах применяют, например, индий-галлиевый еплав. Разрабатываются промыщленные радиационные контуры такого же типа, а также контуры с рабочим веществом на основе 235у Мощность радиационных контуров—10 —10 кВт. Генерируемое у-излучение в 5—10 раз дешевле излучения Со. [c.95]

    В нейтронном АА в качестве источников нейтронов обьино используются ядерные реакторы, включающие весь спектр указанных выше энергий нейтронов, и генераторы нейтронов, дающие практически монохроматические нейтроны со средней энергией 14,5 МэВ (с большим выходом) по реакции + П —> Не + п. Находят применение также и ускорители электронов, в которых с помощью конверторов из тяжелых металлов W, Аи, U получают нейтроны с испарительным или делительным (с урановым конвертором) спектром со средней энергией около 2 МэВ. Используются и другие источнржи нейтронов, основанные на реакции Ве(а,и) С или на реакции (у,и) при облучении Ве гамма-квантами Ка или [c.6]

    О, Р, Ка, К и др.), которые имеют более высокий, по сравнению с тяжелыми элементами, порог (у,и)-реакции [36]. Так, при анализе проб биологической ткани, несмотря на то, что НАА имеет на 2-3 порядка более низкие пределы определения большинства элементов, ФАА оказывается более предпочтш-ельным. Поскольку нейтронный анализ приводит к сильной активации макроосновы биологического образца за счет Ка, К и С1, гфактически невозможно использовать инстру менталь-ный НАА по радионуклидам с периодами полураспада менее одних суток. ФАА обладает высокой экспрессно-стью и производительностью, так как для подавляющего числа возникающих по реакции (у, )-радионуклидов характерны малые периоды полураспада. Имеется также возможность анализа проб большой массы (до 1 кг) из-за отсутствия эффекта самоэкранирования. Наиболее широкое распространение ФАА получил после создания линейных ускорителей электронов, бетатрона и микротрона, на которых формируют мощные пучки регулируемого по максимальной энергии тормозного излучения электронов высокой стабильности, что дало возможность ФАА получить низкие пределы определения большинства элементов (табл. 9.5). В настоящее [c.59]


Смотреть страницы где упоминается термин Нейтроны ускорители: [c.111]    [c.410]    [c.100]    [c.40]    [c.224]    [c.370]    [c.83]    [c.170]    [c.194]    [c.83]   
Химия изотопов Издание 2 (1957) -- [ c.168 , c.190 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтрон

Ускорители



© 2024 chem21.info Реклама на сайте