Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядро атомное устойчивость

    В квантовой механике для учета размерности различных величин чаще пользуются так называемыми атомными единицами. В атомной системе единиц запись всех уравнений и выражений теории строения атомов и молекул значительно упрощается и легче проследить их физический смысл. В этой системе приняты за единицы массы , заряда электричества, длины, энергии величины масса электрона, заряд протона, среднее расстояние электрона от ядра в наиболее устойчивом состоянии атома водорода, удвоенная энергия ионизации атома водорода, соответственно. Единице приравнена также величина к/ 2п), называемая единицей действия. Атомная система единиц применяется и в настоящем разделе пособия. В таблице 2.1 приведены некоторые соотношения между атомными единицами и единицами СИ. [c.47]


    Дефект массы характеризует устойчивость атомных ядер и энергию связи нуклонов в ядре. Дефект массы соответствует энергии, которая выделяется при образовании ядра из свободных протонов и нейтронов и может быть вычислена из соотношения Эйнштейна Е — тс , где Е — энергия т — масса, с — скорость света в вакууме (с = 3-10 м/с). [c.9]

Рис. 20.1. Зависимость числа нейтронов от числа протонов в ядрах устойчивых изотопов. По мере возрастания атомного номера нейтронно-протонное отношение для устойчивых ядер повышается. Устойчивые изотопы располагаются на графике в так называемом поясе устойчивости, Большинство радиоактивных изотопов располагается за пределами пояса устойчивости. Рис. 20.1. <a href="/info/39461">Зависимость числа</a> нейтронов от <a href="/info/250405">числа протонов</a> в ядрах устойчивых изотопов. По мере возрастания <a href="/info/7168">атомного номера</a> <a href="/info/17215">нейтронно-протонное</a> отношение для устойчивых ядер повышается. <a href="/info/18232">Устойчивые изотопы</a> располагаются на графике в так называемом поясе устойчивости, Большинство <a href="/info/2456">радиоактивных изотопов</a> располагается за пределами пояса устойчивости.
    Атомные ядра включают N нейтронов и Z протонов. Параметры и свойства атомных ядер влияют на протекание химических процессов, так как масса, заряд, энергия связи, устойчивость и ядерный спин ядра в значительной мере определяют свойства атома в целом. Отметим прежде всего, что с помощью масс-спектроскопических методов можно обнаружить разность ме кду массой ядра и массой, найденной простым суммированием масс составляющих его нуклонов, — так называемый дефект массы Ат. Энергетический эквивалент дефекта массы представляет собой энергию связи нуклонов в ядре. Ат = = 1,0078 Z+1,0087 N —т. Для ядра гелия Ат = 0,03 а. е. м., что соответствует 27,9 МэВ. Энергия связи ядра химического элемента приблизительно линейно зависит от массового числа A=--Z- -N. Если построить график зависимости средней энергии связи па один нуклон от массового числа, наблюдается максимум при средних значениях массового числа. Таким образом, ядра со средним массовым числом более устойчивы, чем тяжелые или легкие. Следует отметить, что тяжелые ядра богаче нейтронами, чем легкие. При Z>84 уже не существует стабильных ядер. Различают следующие виды ядер изотопы (равные Z, неравные N), изотоны (неравные Z, равные N), изобары (неравные Z, неравные N, равные А), изомеры (равные Z и N, однако внутренняя энергия неодинакова). Для нечетных А имеется лишь одно стабильное ядро, а для четных — несколько стабильных ядер изобаров (правило изобар Маттауха). [c.34]


    Изложенные закономерности как в отношении состава, так и в отношении энергии образования атомных ядер объясняются особенностями взаимодействия нуклонов внутри ядра. В настоящее время принято считать, что во внутриядерных силах важнейшую роль играет интенсивное взаимодействие между протонами и нейтронами. Силы, действующие в этом случае, проявляются при расстояниях 10 2 см и очень быстро убывают с увеличением расстояния (обратно пропорционально не второй, а значительно более высокой степени его). Наряду с этим взаимодействием сказывается и взаимное отталкивание протонов внутри ядра. Это отталкивание выражается законом Кулона и убывает с увеличением расстояния значительно медленнее. В результате этого у более тяжелых ядер (вследствие большего размера их) силы взаимного притяжения частиц, из которых они состоят, ослабляются, а взаимное отталкивание протонов проявляется относительно сильнее Энергия образования таких ядер из нейтронов и протонов возрастает уже не пропорционально массе, а в меньшей степени, и потому тяжелые ядра менее устойчивы. В связи с этим для тяжелых ядер имеет большое значение наличие указанного выше избытка нейтронов, так как тем самым увеличивается среднее расстояние между протонами и ослабляется их взаимное отталкивание. [c.54]

    В естественной плеяде изотопов кислорода преобладает изотоп в 0, его атомное ядро наиболее устойчиво среди других изотопов кислорода. [c.212]

    Помимо рассмотренных выше путей превращения радиоактивных изотопов, для некоторых из них характерен переход ядра в устойчивое состояние путем захвата электрона из собственной электронной оболочки, Подобное превращение носит название электронного захвата (ЭЗ). В результате е-захвата атомный номер элемента понижается на единицу. Примером может служить образующаяся по реакции + п = = - - у радиоактивная которая за время около двух дней наполовину превращается посредством е-захва- [c.522]

    Взаимодействие между атомными ядрами и электронными оболочками в атомах и химических соединениях осуществляется главным образом благодаря наличию у них зарядов и служит основой при возникновении химической связи и образовании химических соединений. В ядрах атомов между протонами и нейтронами действуют особые ядерные силы, которые во много раз больше сил взаимодействия зарядов. Именно поэтому в химических реакциях даже при самых высоких температурах (10 —10 К) атомные ядра остаются устойчивыми, тогда как электронные оболочки атомов испытывают глубокие изменения. [c.10]

    Дефект массы характеризует устойчивость атомных ядер и энергию связи нуклонов в ядре. Дефект массы соответствует энергии, которая выделяется при образовании ядра из свободных протонов и нейтронов и может быть вычислена из соотношения Эйнштейна [c.40]

    Распространение элементов в земной коре зависит от устойчивости их атомного ядра. А устойчивость ядра в свою очередь зависит от отношения числа нейтронов к протонам в ядре. Чем ближе это отношение к 1,5, тем менее устойчиво ядро, тем меньше элемента в земной коре. Например, у урана  [c.117]

    При одном и том же порядковом номере 2, т. е. при одном и том же числе протонов, ядра могут иметь разное число нейтронов, следовательно, разные массовые числа А. Это и дает разные изотопные разновидности элемента порядкового номера 2, т. о. элемента, занимающего данную клетку таблицы Менделеева. Число этих изотопов ограничено, так как ядро теряет устойчивость и неспособно существовать, если при заданном числе протонов оно будет иметь слишком много или слишком мало нейтронов. Поэтому число изотопов каждого элемента невелико и их атомные веса лежат в сравнительно узких границах изменения величин А. Из этих изотопов некоторые вполне стабильны, другие же из-за несоответствия между числом протонов и нейтронов неустойчивы и принадлежат к радиоактивным. [c.22]

    Помимо рассмотренных выше путей превращения радиоэлементов, для некоторых из них довольно характерен переход ядра в устойчивое состояние путем захвата электрона из собственной - электронной оболочки. Подобное превращение носит название электронного захвата (ЭЗ). В результате е-захвата атомный номер элемента понижается на единицу. Например, з Аг (Т = 35 дн) переходит в С , [c.570]

    Помимо рассмотренных выше путей превращения радиоэлементов, для некоторых из них довольно характерен переход ядра в устойчивое состояние путем захвата электрона из собственной электронной оболочки. Подобное превращение носит название электронного захвата (ЭЗ). В-результате е-захвата атомный номер элемента понижается на единицу. Например, Аг (Т = 35 дн) переходит в С1, " V (Г = 0,9 л) — в Ti и т. д. Наряду с рентгеновским излучением, обусловленным перестройкой электронной оболочки, е-захват. часто сопровождается ядерным у-излучением. [c.356]


    Массовое число. А, и масса ядра, выраженные в атомных единицах массы, не совпадают, в частности, из-за того, что масса протона или нейтрона не равна в точности 1 а.е.м. В приложении 2 указано, что масса протона составляет 1,007276 а.е.м., а масса нейтрона 1,008665 а.е.м. Однако есть и другая причина атом устойчивого изотопа имеет меньшую массу, чем сумма масс всех электронов, протонов и нейтронов, из которых он состоит. [c.407]

    В непереходных металлах атомные ядра, как, например, Ка + или А1 (структура Ые), обладающие заполненной оболочкой, являются очень устойчивыми и химически инертными системами, и единственный тип ожидаемой реакции — это переход валентных электронов [c.31]

    Ядра с числом протонов или нейтронов 2, 8, 20, 50, 82 или 126 более устойчивы, чем ядра элементов, расположенных рядом с ними в периодической таблице. Например, существуют три устойчивых изотопа с атомным номером 18, два с атомным номером 19, пять с атомным номером 20 и один с атомным номером 21 существуют три устойчивых изотопа с 18 нейтронами и ни одного с 19, четыре с 20, но ни одного с 21. Таким образом, устойчивых ядер с 20 протонами или 20 нейтронами больще, чем с 18, 19 или 21. Числа 2, 8, 20, 50, 82 и 126 называются магическими числами. Подобно тому как повыщенная химическая устойчивость атомов связывается с наличием у них 2, 10, 18, 36, 54 или 86 электронов, образующих конфигурации благородных газов, повышенная ядерная устойчивость ассоциируется с магическим числом нуклонов. [c.248]

    Размещение электронов в атомах. Электроны размещаются на уровнях и подуровнях оболочек атомов в соответствии с принципом, согласно которому устойчивое состояние электрона в атоме связано с минимальным значением его энергии, и с принципом Паули. Таким образом, электроны, число которых в атоме равно заряду его ядра, а следовательно, атомному номеру элемента, заполняют последовательно энергетические уровни и подуровни от низших к высшим. Размещение электронов по уровням и подуровням, харак-терн уемое главным и орбитальным квантовыми числами, выражается формулами, в которых уровни обозначаются цифрами, подуровни— условно буквами, а число электронов в подуровне — индексами у соответствующих букв. Так, например, формула s 2s 2p показывает, что в х-подуровне первого уровня находятся два электрона, в 5-подуровне второго уровня — два и в р-подуровне второго уровня — шесть электронов, а общее число электронов в атоме равно сумме индексов, т. е. в данном случае — десяти. [c.30]

    Молекула представляет собой достаточно устойчивую совокупность атомов, связанных валентными связями. Ее особенности становятся понятными, если представить молекулу как динамическую квантовую электронно-ядерную систему. Это система атомных ядер и такого количества электронов, заряд которого равен сумме положительных зарядов атомных ядер, причем валентные электроны, находясь в волновом движении между всеми атомными ядрами, стягивают их и сближаются с ними насколько это возможно, что резко снижает потенциальную энергию системы, придает ей устойчивость. Если в подобной системе имеется некоторое число неспаренных электронов, то это свободный радикал — частица гораздо менее устойчивая, чем молекула, так как радикал не выдерживает столкновения с другими радикалами или молекулами если в данной электронно-ядерной системе имеется избыточный заряд, [c.82]

    Альфа-излучение испускают главным образом ядра с атомным номером больше 83. Такие ядра должны располагаться за верхним правым краем рис. 20.1, вне пределов пояса устойчивости. В результате одновременного уменьшения как числа прото- [c.249]

    Нуклоны распределены приблизительно равномерно по объему ядра. Между образующими ядро частицами действуют два вида сил электростатические силы взаимного отталкивания положительно заряженных протонов и силы притяжения между всеми частицами, входящими в состав ядра, называемые ядерны-ми силами. С возрастанием расстояния между взаимодействующими частицами ядерные силы убывают гораздо более резко, чем силы электростатического взаимодействия. Поэтому их действие заметно проявляется только между очень близко расположенными частицами. Но при ничтожных расстояниях между частицами, составляющими атомное ядро, ядерные силы притяжения превышают силы отталкивания, вызываемые присутствием одноименных зарядов, и обеспечивают устойчивость ядер. [c.90]

    Радиоактивность. Сведения об устойчивости атомных ядер получаются при исследовании явления радиоактивности. При этом распад ядер сопровождается излучением а-излучение — ядра гелия 2Не (ион Не +), /3-излучение — поток электронов высокой энергии, 7-излучение — электромагнитные волны более высокой частоты, чем рентгеновское излучение. [c.91]

    Распространенность элемента связана с устойчивостью его ядра и ходом реакций ядерного синтеза элементов. В соответствии с этим существуют приближенные правила, определяющие распространенность элемента. Так замечено, что элементы с малыми атомными массами более распространены, чем тяжелые элементы. Далее, атомные массы наиболее распространенных элементов выражаются числами, кратными четырем элементы с четными порядковыми номерами распространены в несколько раз больше, чем соседние с ними нечетные элементы. Установлено, что изменение величин кларков элементов с увеличени-ем порядкового номера элемента соответствует характеру изменения дефектов масс. [c.318]

    Эти результаты согласуются с известными качественными представлениями, объясняющими химическую связь перекрытием атомных орбиталей. Из формулы (1.41) видно, что поэтому плотность электронного облака в пространстве между ядрами в случае симметричной МО возрастает, а в случае антисимметричной — убывает. Это и позволяет упрощенно объяснить химическую связь одновременным притяжением ядер к области повышенной электронной плотности, возникающей между ядрами при образовании устойчивой молекулы. [c.31]

    Энергии связи отдельных нуклонов в атомном ядре заметно различаются, особенно для легких ядер. При этом более устойчивы и распространены атомные ядра с четным числом протонов и нейтронов [четно-четные ядра). Атомные ядра с нечетным числом нуклонов менее устойчивы и распространены. К ним относятся ядра с четным 2 и нечетным N (четно-нечетные) или нечетным 2 и четным N (нечетно-четные). Наименьшей прочностью характеризуются атомные ядра с нечетным 2 и нечетным N (нечетно-нечетные). Известно всего четыре устойчивых нечетно-нечетных ядра lHe , зЫ , и зВ . Особой прочностью обладают атомные ядра, содержащие 2, 8, 20, 50, 82 и 126 протонов или нейтронов, например 2He вО , 2оСа °, 5оЗп 2°, д2РЬ2ов  [c.49]

    Напротив, если химические свойства малораспространенных элементов, зависящие прежде всего от заряда и радиуса образуемых ими ионов, существенно отличаются от свойств элементов, широко распространенных (т. е. с атомными ядрами высокой устойчивости), то минералы, образованные малорасиространенными элементами, не находят себе носителя кристаллизации и поэтому дольше других элементов сохраняются в расплаве. Такая задержка кристаллизации способствует концентрированию данного минерала в остаточном расплаве. Часто именно такие расплавы увлекаются водяным паром в трещины застывшей силикатной магмы и там застывают в виде пегматитовых жил ( остаточная кристаллизация). Поэтому пегматиты часто содержат собственные минералы многих редких элементов (без матрицы, образованной минералами широко распространенных элементов). [c.245]

    С) связывают с их склонностью вступать в (а, п) реакции. В результате реакции Be(a, n) впервые был получен нейтрон. Радиоактивный распад вымерших на Земле и в метеоритах тяжелых элементов привел к повышенному распространению изотопов свинца. Свинец и другие магические ядра благодаря заполненности энергетических уровней нуклонов в ядре более устойчивы к реакциям захвата нейтронов и потому более распространены. На Земле непрерывно происходят ядерные процессы, ведушие в конечном счете к изменению распространенности элементов и изменению их изотопного состава. Однако все эти процессы идут медленно и результаты анализа вещества земной коры показывают, что изотопный состав элементов на Земле практически постоянен. Например, у хлора, извлеченного из морской воды и выделенного из минералов (апатита и др.), атомная масса оказалась одинаковой. То же самое обнаружено для N1, Ре, 51, Н , Ы, 5Ь, Си и других элементов. [c.432]

    Это соотношение и объясняет тот факт, что при малых массовых числах наиболее устойчивы изотопы с Z = N = А/2 (как, например, С или ) Ы). У устойчивых тяжёлых ядер число нейтронов N всегда несколько превышает Z, чтобы скомпенсировать действием ядерных сил электростатическое рассталкивание протонов. Из (1.3.3) и (1.3.4) также вытекает, что наиболее устойчивыми будут чётно-чётные ядра, что и определяет суш,ествование большого числа стабильных изотопов с чётным Z, о чём говорилось ранее. При отклонении заряда ядра или массового числа от области стабильности энергия связи уменьшается и становится отрицательной, вследствие чего атомное ядро теряет устойчивость и оказывается способным к самопроизвольному превраш,ению в ядра с другими А ц. Z. Более того, поскольку притяжение нуклонов пропорционально А, а энергия электростатического взаимодействия пропорциональна Z , то при больших Z энергия связи ядра всегда будет отрицательна, чем объясняется отсутствие стабильных ядер с > 83. Отметим, что формула (1.3.3) относится к энергии связи основного, наинизшего состояния ядра. Возбуждённые же состояния ядра, как и возбуждённые состояния электронов в атомных оболочках, неустойчивы сами по себе и подвержены спонтанному распаду в основное состояние с испусканием одного или нескольких гамма-квантов. Однако, поскольку энергия связи нуклонов в ядре при возбуждении суш,ественно уменьшается, то возбуждённое ядро может также превратиться в другое ядро путём испускания каких-либо частиц. [c.22]

    Материя состоит из элементов, среди которых 92 — естественные, несколько получены искусственно. Элементы состоят из атомов, которые имеют положительно заряженное ядро и вращающиеся вокруг него отрицательно заряженные электроны. Ядро состоит из протонов (заряженных положительно) и нейтронов (электрически нейтральных частиц). Протоны и нейтроны имеют одинаковую массу, которая приблизительно в 1800 раз больше массы электронов. Обычно атомы электрически нейтральны, так как число вращающихся вокруг ядра электронов равно числу протонов в ядре. Атомный номер элемента, т. е. число протонов в ядре, Z и атомная масса А обозначаются слева от элемента. Например, I — это атом I, в ядре которого находятся 53 протона и 78 нейт-рбнов. В настоящее время известно приблизительно 1600 изотопов. Изотопом называется разновидность одного и того же химического элемента, отличающаяся массой атома. Например, и " 1. Большинство изотопов стабильны, но некоторые из них неустойчивы и подвержены радиоактивному распаду, в результате которого образуются более устойчивые элементы. Каждый радиоактивный изотоп (нуклид) распадается специфическим образом, испуская одну или несколько определенных порций энергии. Существует несколько типов распада, включающих а-, 3- и у-излучение, внутреннюю конверсию и захват электронов. [c.9]

    В результате Гейтлер и Лондон получили уравнения, позволяющие иайти зависимость потенциальной энергии Е системы, состоящей из двух атомов водорода, от расстояния г между ядрами эшх атомов. Г1ри этом оказалось, что результаты расчета зависят от того, одинаковы или нротикопо-ложны по знаку спины взаимодействующих электронов. При совпадающем направлении спинов (рис. 26, кривая а) сближение атомов приводит к непрерывному возрастанию энергии системы. В этом случае для сближения атомов требуется затрата энергии, так что такой процесс оказывается энергетически невыгодным и химическая связь между атомами ие возникает. При противоположно направленных спинах (рис. 26, кривая б) сближение атомов до некоторого расстояния го сопровождается уменьшением энергии системы. При г = система обладает наименьшей потенциальной энергией, т. е. находится в наиболее устойчивом состоянии дальнейшее сближение атомов вновь приводит к возрастанию энергии. Но это и означает, что в случае противоположно направленных спинов атомных электронов образуется молекула На — устойчивая система из двух атомов водорода, находящихся на определенном расстоянии друг от друга. [c.120]

    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]

    Ковалентная связь. На рис. 22 представлено образование связывающей и разрыхляющей МО молекулы Нг из АО, а также диаграмма плотности вероятности (плотности электронного облака). В нижней части рис. 22, а и б приведены условные контурные диаграммы электронной плотности, напоминающие топографические карты. В пространстве между ядрами значения ф5 и ф5р выше, чем были бы они для изолированной атомной орбитали. Соответственно выше здесь и плотность электронного облака. Это означает, что для молекулярной орбитали вероятность пребывания электрона в межъядерной области велика. Отрицательный заряд между ядрами притягивает к себе положительные заряды обоих ядер и в то же время экранирует их друг от друга, уменьшая их взаимное отталкивание. В результате наблюдается значительное понижение энергии электрона в поле двух ядер молекулы по сравнению с энергией электрона в атоме. Общее понижение энергии —результат преобладающего понижения потенциальной энергии электрона. Поэтому система из двух ядер и электрона оказывается более устойчивой, чем система разъединенных ядер, иными словами, вследствие понижения потенциальной энергии электрона возникает химическая связь. Характерной ее особенностью является коллективизирозание электрона всеми (здесь двумя) ядрами молекулы. Такая связь называется ковалентной. В основе хими- [c.69]

    В 1926 г. Гейзенберг и Шредингер создали механику атомных и молекулярных систем, которая получила широкое применение в атомной и молекулярной физике. Необходимое дополнение в квантовую механику внес Паули, разработавший теорию электронных спинов. Это явилось фундаментом, на котором с учетом известного правила несовместимости (запрет Паули в атоме не может быть двух электронов, обладающих 4 одинаковыми квантовыми числами) было построено учение о химических силах, в принципе позволяющее понять и описать образование химических соединений. Сначала удалось интерп )етировать устойчивость электронных оболочек атомов инертных газов, благодаря чему нашло исчерпывающее объяснение понятие электровалентной связи, лежащее в основе теории Косселя. Затем получила квантово-механическое истолкование и ковалентная связь. Гейтлером и Лондоном было показано, что связь двух атомов в молекуле водорода может быть объяснена чисто электростатическими силами, если для этого использовать квантовую механику. Силы, связывающие два атома и два электрона, возникают благодаря тому, что оба электрона имеют антипараллельные спины и с большой степенью вероятности находятся между двумя атомными ядрами насыщаемость химических связей объясняется принципом Паули. Таким образом, представления Льюиса получили исчерпывающее физическое обоснование. [c.24]

    Некоторые сведения о строении атомов. Атомная система, состоящая из положительно заряженного ядра и отрицательно заряженной оболочки, устойчива лишь в состоянии движения. Движение электронов в электростатическом поле ядра и оболочки описывается в квантовой механике функцией или так называемой волновой функцией. Последняя в случае устойчивого атома зависит только ot пространственных координат, например х, у, г, и может быть найдена в вИде так называемой собственной функции путем рещения некоторого дифференциального уравнения в частных производных (независимого от времени уравнения Шредингера). Обычно существует большое число таких решений, н каладой собственной функции соответствует определенное собственное значение энергии Однако бывает и так, чto одному собственному значению соответствует несколько различных собственных функций. Этот случай называется вырождением. Собственное значение энергии и соответствующая собственная функция каждого электрона определяют его состояние (орбиту) в атоме. Наглядная интерпретация собственных функций, по Борну, заключается в следующем квадрат значения х, у, г), умноженный на элемент объема = йхйуйг в точке х, у, г, т. е. представляет собой критерий ве- [c.47]

    Не следует забывать, что химия исследует вещество только в одном из аспектов. Изучая состав, химические свойства, способы получения твердых веществ, мы не можем обходиться без представления об их электронной конфигурации, кристаллической структуре, без знания закономерностей, которым подчиняются изменения физических свойств с изменением энергетического состояния вещества, словом без физической теории и без физических экспериментов. Химия, физика твердого тела и молекулярная биология — по определению физика-теоретика айскопфа — являются непосредственным следствием квантовой теории движения электронов в кулоновском поле атомного ядра. Все многообразие химических соединений, минералов, изобилие видов в мире организмов обусловливается возможностью расположения в достаточно стабильном положении сравнительно небольшого количества первичных структурных единиц — атомов — огромным количеством способов, диктуемых пространственной конфигурацией электронных волновых функций. Длина связи, т. е. межатомное расстояние,— это диаметр электронного облака, определяемый амплитудой колебания электрона в основном состоянии. Поскольку масса ядра во много раз больше массы электрона, соответствующая амплитуда колебания ядра во много раз (корень квадратный из отношения масс) меньше. Поэтому, как отмечает Вайскопф, ядра способны образовывать в молекулах и кристаллах довольно хорошо локализованный остов, устойчивость которого измеряется энергией порядка нескольких электронвольт, т. е. долями постоянной Ридберга. Местоположения ядер атомов, образующих остов кристалла, с большой точностью определяются методом рентгеноструктурного анализа. Таким образом, бутлеровская теория строения, структурные формулы в наше время получили ясное физическое обоснование. [c.4]

    Устойчивость ядра заметно коррелирует с отношением числа нейтронов к числу протонов. Все ядра с двумя или большим числом протонов содержат нейтроны. По-видимому, нейтроны каким-то образом удерживают протоны внутри ядра. Как показано на рис. 20.1, число нейтронов, необходимое для создания устойчивого ядра, быстро повышается с возрастанием числа протонов в результате с увеличением атомного номера отношение числа нейтронов к числу протонов (нейтроннопротонное отношение) возрастает. На рис. 20.1 площадь, в пределах которой расположены все устойчивые ядра, называется ноясом устойчивости. [c.248]

    Радиоактивными ядрами являются нуклиды (6), низкое нейтронно-протонное отношение (в), низкое нейтронно-протонное отношение (д), большой атомный номер. 20.14. а) Нет- низкое нейтронно-протонное отношение. Должен быть радиоактивен с испусканием позитрона, б) Нет-низкое нейтронно-протонное отношение. Должен испускать позитрон или (возможно) подвергаться захвату орбитального электрона, в) Нет-большое нейтроннопротонное отношение. Должен испускать бета-частицы. г) Нет-большой атомный номер. Должен испускать альфа-частицы. 20.17. а) Таллий-210 имеет большое нейтронно-протонное отношение. Испускание бета-частиц, в сущности, превращает нейтрон в протон, чем снижает нейтронно-протонное отнощение. б) ддАс имеет низкое нейтронно-протонное отношение. Захват орбитального электрона превращает протон в нейтрон, что повышает нейтронно-протонное отношение, в) азВ имеет низкое нейтроннопротонное отношение. Испускание альфа-частицы снижает как число нейтронов, так и число протонов и понижает атомный номер ядра в сторону значения, для которого пониженное нейтронно-протонное отношение достаточно для устойчивости. 20.19. Ое -> + Че. [c.477]

    ХИМИЧЕСКАЯ СВЯЗЬ — взаимодействие между атомами, обусловлива-ющее образование устойчивой многоатомной системы (молекулы, радикала, молекулярного иона, комплекса, кристалла и др.). Все химические превращения сопровождаются разрушением химической связи. X. с. возникает вследствие кулоновского притяжения между ядрами и электронным зарядом, распределение которого обусловлено динамикой поведения электронов и подлежит квантовомеханическим законам. Электронный заряд многоатомной системы возникает нри обобществлении атомных электронов. Различают ионную (гетерополяр-ную, электровалентную), ковалентную (гомеополярную, атомную) и металлическую X. с. X. с. н зыз 1ЮТионной, если она возникает вследствие практически полного перехода электронов с орбитали одного атома на орбиталь другого. Например, во время реакции натрия с хлором атомы натрия теряют, а атомы хлора присоединяют по одному электрону, превращаясь в ионы Ыа+ и С1 (электронный заряд локализован на атомах). Если ионная связь возникает между ионами и полярными (дипольными) молекулами, то ее называют ионно-ди-10 8-149 [c.273]

    ЭЛЕКТРОН (е) — устойчивая элементарная частица с отрицательным электрическим зарядом, принятым за единицу количества электричества, и массой, равной 9 г. Э. был открыт в 1897 г. Дж. Томсоном. Э. играют основную роль в строении вещества, они являются одной из составных частей атомов. Э,, движущиеся вокруг атомного ядра, определяют химические, электрические, оптические и другие свойства атомов и л олекул. Характер движения Э. обусловливает свойства жидких и твердых тел, их плотность, электропроводность метяллов и полупроводников, свойства диэлектриков, оптические и другие свойства кристаллов и т. д. Важную роль играют ва- [c.290]

    Итак, развиваются исследования по периодичности свойств атомных ядер, а следовательно, и определению границы периодической системы. Доказывается существование островов стабильности (относительно устойчивых сверхъядер) вблизи ядер с магическими числами (114 протонов и 184 нейтронов 164 протонов и 308 нейтронов). Синтез новых ядер дает ученым исходные данные на пути к единой теории ядра, которая должна объяснить и предсказать, подобно периодической системе Д. И. Менделеева, свойства всех ядер. [c.427]


Смотреть страницы где упоминается термин Ядро атомное устойчивость: [c.259]    [c.15]    [c.175]    [c.785]    [c.104]    [c.419]    [c.52]    [c.250]   
Учебник физической химии (1952) -- [ c.417 , c.421 ]

Учебник физической химии (0) -- [ c.459 , c.462 ]




ПОИСК





Смотрите так же термины и статьи:

Атомное ядро



© 2024 chem21.info Реклама на сайте