Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протоны превращения

    При бомбардировке лития протонами происходи,т превращение его в гелий. Написать уравнение ядерной реакции. [c.68]

    Эти молекулы находятся в поле действия соседних молекул и связаны с ними водородной связью. Кроме того, они также взаимно влияют друг на друга. Тепловое движение частиц внутри комплекса и перемещение комплексов друг относительно друга могут ослабить в одной из молекул связь О—Н и разорвать ее. Разрыв сопровождается переходом протона к соседней молекуле за счет превращения водородной связи в ковалентную по донорно-акцепторному механизму  [c.120]


    Искусственные ядерные превращения осуществляются путем бомбардировки атомов различными быстро летящими частицами, а именно протонами, нейтронами, а-частицами, дейтронами и реже электронами и позитронами. [c.67]

    Наиболее часто происходит бета-распад ядер, т. е. ядро испускает электрон (Р -частицу) за счет превращения одного нейтрона ядра в протон по схеме [c.657]

    Влияние давления водорода на селективность протекания Сз- и Сб-дегидроциклизации н-гептана и н-октана в присутствии нанесенных Pt-катализаторов обсуждается в интересном цикле работ И. И. Левицкого, X. М. Ми-начева и сотр. [132—135]. В частности показано, что увеличение давления Нг изменяет направления Сз- и Сб-дегидроциклизации н-октана при 375°С над Pt/ в сторону большего образования 1,2-дизамешенных циклов (1-метил-2-этилциклопентан и о-ксилол). Предполагают, что обе реакции проходят через обшую стадию— образование моноадсорбированных комплексов, строение которых определяет направление этих реакций, а последуюшие превращения ведут к возникновению пя-ти- или шестичленных циклов. При этом авторы исходят из развиваемой ими концепции, согласно которой направления Сз- и Сб-дегидроциклизации н-октана определяются соотношением эффективных зарядов С-атомов реагирующей молекулы углеводорода и атомов (ионов) металла, входящего в катализатор. В зависимости от указанного соотношения атом металла вытесняет из молекулы углеводорода либо протон (далее осуществляется протонный механизм), либо гидрид-ион ( гидрид-ионный механизм) с последующим образованием моно-адсорбированного комплекса. Последующий путь циклизации н-октана с образованием пятичленного цикла или ароматического углеводорода определяется второй стадией процесса циклизации — образованием диадсор-бированного комплекса. Представления, изложенные в работах [132, 134], иллюстрируются следующей схемой, [c.234]

    На разных стадиях организации материи ее видам присуща своя ( )орма движения. Например, взаимодействию и превращению протонов [c.6]

    В цервой реакции происходит испускание а-частицы и превращение полония в свинец. Во второй и третьей реакциях один протон в ядре превращается в нейтрон. Во второй реакции это сопровождается испусканием позитрона ( ), частицы с массой электрона, но с единичным положительным зарядом  [c.411]

    А1 Высушенные и прокаленные аморфные алюмосиликаты проявляют протонную и апротонную кислотности. При этом по мере повышения температуры прокаливания происходит превращение протонных кислотных центров в апротонные. [c.110]


    Изомеризация циклопропана в пропилен и последующий метатезис последнего с образованием этилена и бутилена исследованы на оксидных алюмомолибденовых катализаторах [82]. Методом меченых атомов показано, что те же превращения в случае метилциклопропана протекают с большей скоростью. Предполагают, что раскрытие цикла с образованием алкена происходит на протонных центрах катализатора, а последующий метатезис — на координационно ненасыщенных ионах Мо + по карбеновому механизму. [c.101]

    Серная кислота катализирует реакцию олефинов со многими другими веществами кислота является, по-видимому, донором протонов для олефина при образовании карбоний-иона. Например, раствор олефинов в ледяной уксусной кислоте в присутствии очень небольшого количества серной кислоты дает хорошие выходы т/)ет-алкилацетатов при комнатной темнературе и отличные выходы ацетатов м-олефинов при средних температурах (см. ниже — обсуждение реакции олефинов с органическими кислотами). Наиболее интересным примером реакции, катализируемой. серной кислотой, является превращение изобутилена в (СНз)зС СОдН, (Осуществляемое с выходом 60%, под воздействием 73 %-ной кислоты и окиси углерода при 100° и 875—900 ат [18]  [c.356]

    Благодаря присоединению протона к одной из ОН-групп связь между центральным атомом углерода и оксифенильным ядром ослабляется и происходит расщепление. Образовавшиеся ионы стабилизуются за счет превращения соответственно в /г-изопропенилфенол и фенол. [c.11]

    Третьим направлением превращения карбкатиона является отщепление протона с одновременным присоединением молекулы воды, приводящее к образованию важнейшего полупродукта [c.699]

    По мере вымывания щелочи сорбционные характеристики цеолитов и их каталитическая активность повышаются. С увеличением степени отмывки от pH 9 до pH 6,5 создается дефицит ионов Na" , который для pH 7 составляет 4,5, а для pH 6,5—5 %. Здесь функцию по компенсации зарядов алюмосиликатных тетраэдров начинают выполнять протоны водорода, т. е. образуется водородная форма цеолита. По-видимому, это и приводит к увеличению степени превращения процесса дегидратации с одновременным снижением его селективности, а в случае крекинга кумола — к повышению выхода бензола. [c.314]

    Вместе с тем возврат центром Льюиса поглощенного водорода для за вершения цепи превращения, вероятно, необязателен. Легко представить, что карбоний-ион Q", возникший на стадии (3), отдает протон центру Бренстеда с образованием н( насыщенного продукта реакции и восстановлением центра Бренстеда  [c.349]

    При таком ядерном превращении происходят захват ядром одного электрона из окружающего ядро электронного облака (из ближайшей к ядру А -оболочки) и соединение этого электрона с протоном с образованием нейтрона. Примером может служить превращение бериллия-7 в литий-7  [c.412]

    Современное состояние науки о ядре и его структуре находится примерно в том же положении, в котором находилась теория строения атома в 1925 г. Имеется возможность проводить измерения свойств ядер, описывать и классифицировать их, но нет еще общей теории, позволяющей объяснить эти свойства. Ядра состоят из протонов и нейтронов, сосредоточенных в небольшом объеме и взаимодействующих сильнее всего лишь со своими непосредственными соседями по ядру. В некоторых отношениях (это касается энергии связи) они подобны спрессованным капелькам однородных частиц, но в других отношениях (предпочтительность четного числа нуклонов и существование магических чисел) они ведут себя так, будто образуют оболочечные структуры, подобные электронным оболочкам. Диаграммы энергетических уровней для ядер могут быть построены на основе спектров у-излучения, сопровождающего ядерные превращения. Ядра, подобно электронам в атоме, тоже имеют основные и возбужденные состояния. [c.435]

    В результате этих превращений могут получаться возбужденные молекулы водорода, протоны, обладающие большой кинетической энергией, положительные ионы Н и в небольших количествах отрицательные ионы Иг и ионы Н . Эти ионы, по-видимому, образуются по реакции Н2 + Нг — Нз-f Н. [c.555]

    Карбкатион, образующийся при взаимодействии углеводорода с кислотными центрами катализатора, претерпевает быстрые дальнейшие превращения, подвергаясь Р-отщеплению с разрывом связи С—(Z, изомеризации, Н-переносу, элиминированию протона, циклизации, алкилированию, полимеризации. [c.107]

    Гомологи циклопропана по своим свойствам близки к олефино-вым углеводородам они изомеризуются под действием кислот, протонируются с раскрытием цикла, способны вступать в реакцию алкилирования ароматических углеводородов и т. п. Стабилизация образующихся циклопропильных карбокатионов протекает после присоединения к ароматическому ядру или другому электронодонорному соединению, а также за счет выброса протона и превращения в олефиновый углеводород  [c.131]

    Механизм действия кислотных катализаторов связан с образованием карбкатионов, которые инициируют реакцию. Галогениды и алюмосиликаты также обладают кислотными свойствами. Схема превращений в присутствии протонных кислот может быть описана уравнением  [c.321]


    Окислительное декарбоксилирование пирувата. Из цитозоля пируват транспортируется в митохондрии с помощью специального переносчика, который обеспечивает транспорт молекул пирувата через внутреннюю мембрану митохондрий по механизму симпорта с протоном. Превращение пирувата в ацетил-КоА катализирует мультиферментный пируватдегидрогеназный комплекс. Перемещение индивидуальных ферментов в комплексе ограничено. Промежуточные продукты превращений пирувата не отделяются от мультйферментного комплекса. [c.151]

    Так как собственно химическое превращение HaS в общем состоит в передаче протона, то наиболее вероятно осуществление режима мгновенной реакции. Единственное известное автору исключение составляет абсорбция растворами высококарбонизиро-ванного амина, где диссоциация сероводорода вызывает обратное превращение карбамата в бикарбонат, так что медленной стадией снова будет реакция (IV). В некоторых аспектах этот вопрос обсуждался Астарита, Джойя и Бальзано [2]. [c.157]

    Согласно этому соотношению уменьшение массы на 0,030376 а. е. м. при образозании ядра гелия из двух протонов и двух нейтронов соответствует выделению огромного количества энергии в 28, 2 МэВ (1 МэВ = 10 эВ). Отсюда средняя энергия связи в ядре на один нуклон составляет примерно 7 МэВ. Энергия связи нуклонов в ядре в миллионы раз превышает энергию связи атомов в молекуле ( 5 эВ). Поэтому-то при химических превращениях веществ атомные ядра не изменяются. [c.9]

    Закончить приведенные ниже схемы ядернЫх превращений, происходящих под действием протонов, дейтронов и а-частиц (см. условие задачи 366) а) Р[ Н, а] х б) [ Н, а]х в) А1[Ч х] Н г) ОрН, "а]х д) 2 А1рН, а]х. [c.69]

    Собственная ионизация жидкого HF незначительна К =2,07х Х10" ).0на происходит путем перехода протона (илисоответственно иона фтора) от одной молекулы к другой, сопровождающегося превращением водородной связи из межмолекулярной в межатомную и в ковалентную, При этом образуются сольватированные фтороний-яок Щ и фторогидрогенат-тн HF по схеме [c.284]

    Кроме того, существует точка зрения о том, что обмен син- и анги-протонов происходит путем вращения вокруг С С-аллильной связи. По существу, приведенная схема выражает п-> о-превраще-ние молекулы с сохранением координационного числа переходного металла и представляет собой процесс, обратный превращению ст-аллильных производных в л-аллильные  [c.110]

    Превращение протона в нейтрон может происходить не только путем выделения позитрона, но и путем захвата ядром атома собственного электрона. Это явление получило название- электронного захвата. Чгще всего происходит /(-захват, т. е. захват электрона из ближайшего к ядру уровня К. Относительно реже встречается захват электрона с уровня I ( -захват). [c.68]

    Первое искусственное осуществление ядерной реакции (Резерфорд, 1919) положило начало новому методу изучения атомного ядра. Открытие нейтронов (Чэдвик, 1932) привело к возникновению протонно-нейтронной теории атомных ядер, предложенной сначала Д. Д. Иваненко и Е, Н. Гапоном (1932) н в том же году Гейзенбергом. Вскоре Фредерик и Ирен Жолио-Кюри (1934) открыли явление искусственной радиоактивности В 1938 г. Хан и Штрассман осуществили деление атомного ядра урана, а в 1940 г. К. Д. Петржак и Г. Н. Флеров открыли явление самопроизвольного деления атомных ядер. В 40-х годах была осуществлена цепная ядерная реакция (Ферми) и вскоре был открыт новый вид ядерных превращений — термоядерные реакции. Дальнейшее развитие ядерной физики сделало возможным использование ядерной энергии. Позднее эти явления стали использовать при химических и биологических исследованиях. В настоящее время разрабатывается проблема осуществления управляемых термоядерных реакций. [c.19]

    Превращение карбоний-иона С в целевой продукт может протекать двумя путями. Первый состоит в том, что оба атома водорода, связанные па стадии (2) центром Льюиса, распределяются в виде протона и гидрид-иопа соответственно между центром Гфенстеда и карбоний-ионом С . В результате этого кроме образоваггия целевого продукта проиеходит восстановление первоначального вида обоих кислотных центров  [c.348]

    При изучении системы С6Н5С2Н5—А1Вгз [160, с. 173] в присутствии кислорода методом ЭПР наблюдается два рода сигналов. Сигнал а (рис. 3.4), появляющийся сразу после продувки кислородом воздуха, имеет семь групп линий, которые обусловлены взаимодействием неспаренного электрона с щестью эквивалентными протонами, характеризующимися константой взаимодействия йи равной 7,40 Э. Каждая линия в группе дополнительно расщепляется не менее чем на 11 линий с константой Яг., равной 1,17 Э. Для интерпретации спектра построены теоретические спектры с набором констант и числа протонов. Полное совпадение экспериментального и теоретического спектров наблюдается для парамагнитной частицы, у которой щесть эквивалентных протонов с й1 = 7,40 Э, четыре эквивалентных протона с 2 = 2,28 Э и два эквивалентных протона с аз=1,14 Э. Отсутствие в исходном этилбензоле шести эквивалентных протонов свидетельствует о том, что свободный радикал представляет собой продукт превращения углеводородов. [c.83]

    Второй путь превращения карбоний-иона Сн" может состоять в отрыве этим ионом обоих атомов водорода от льюиеонско1х> центра с появлением нового карбоний-иона С " с пентакоордииированны и атомом углерода, который отдает протон бренстедовскому кислотному центру, в результате чего получается целевой продукт и также восетанавлинаются оба кислотных центра  [c.348]

    Алкилирующие агенты, в частности олефины, при взаимодействии с кислотными катализаторами способны димеризоваться и тримеризоваться с образованием более высокомолекулярных ароматических углеводородов. Подобные превращения могут протекать и при отщеплении от полиалкилбензолов алкилкарбо-ниевых ионов, которые в результате элиминирования протона образуют олефин.. По-видимому, реакциями полимеризации олефинов и распадом промежуточных карбокатионов объясняется появление пропил- и бутилбензолов при алкилировании бензола этиленом. [c.152]

    Снижение гидрируюш ей активности при гидрировании бензола примерно пропорционально уменьшению величины удельной поверхности, изомеризующая и расщепляющая активности понижаются в меньшей степени. При изомеризации циклогексана, наоборот, снижение изомеризующей активности пропорционально уменьшению удельной поверхности. Эти результаты легко интерпретировать с позиций представлений о взаимосвязи реакций гидриройания, изомеризации и расщепления (см. стр. 232 сл.). В самом деле, при гидрировании бензола промежуточно образуемый циклогексен, присоединяя протон, дает начало ионным превращениям. При гидрогенизации циклогексана первой стадией, затрудненной в той же степени, что и реакция гидрирования, будет дегидрирование (см. схему на стр. 235), поэтому уменьшение константы скорости изомеризации в этом случае пропорционально уменьшению удельной поверхности. [c.273]

    Комплексы пропанола-1 с 80 и 96%-й Н2504 изучены в работе [145]. Отсутствие в спектрах ЯМР Н изменения мультиплетности сигналов спирта указывает на отсутствие изомеризации ионных превращений углеводородного радикала. С другой стороны, сдвиг сигналов ОН-группы и протонов радикала в слабое поле указывает на перестройку электронной структуры всей молекулы спирта (табл. 3.4). [c.74]

    Галиды водорода отличаются от галидов других элементов. Они сходны с галидами неметаллических элементов ио физическим свойствам, ио отличаются от них тем, что ио химической природе являются простыми кислотами, т. е. донорами протонов, а следовательно, и галид-иоиов. Эта донорная функция проявляется у них при растворении в воде, а так.тсе ири взаимодействии с галидами неметаллических элементов и с другими соединениями, н1)оявляющимн акцепторные функции. Данные о температурах и- теплотах фазовых превращений различных галоводородов нривсдены в табл. 111,3 Приложения. [c.125]


Смотреть страницы где упоминается термин Протоны превращения: [c.202]    [c.565]    [c.345]    [c.659]    [c.119]    [c.490]    [c.109]    [c.110]    [c.698]    [c.108]    [c.59]    [c.230]    [c.369]    [c.88]    [c.24]    [c.24]   
Химия изотопов (1952) -- [ c.118 ]

Химия изотопов Издание 2 (1957) -- [ c.154 , c.157 , c.170 ]




ПОИСК







© 2025 chem21.info Реклама на сайте