Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород, применение для очистки аргона от кислорода

    Способность цеолитов одновременно адсорбировать пары воды и СО 2 можно использовать для решения очень важной промышленной задачи — создания защитных атмосфер, необходимых при обработке металлов, спекании металлокерамики, специальной пайке и т. п. (применение контролируемых защитных атмосфер позволяет регулировать содержание углерода в поверхностном слое стальных изделий и повышать усталостную прочность и долговечность деталей). Одновременно с парами воды и двуокисью углерода из воздуха под давлением при помощи цеолитов могут удаляться и углеводороды, в частности ацетилен. Кроме того, совместная адсорбция паров воды и СО 2 открывает перспективу для решения вопроса о тонкой осушке, об очистке некоторых газов, используемых в промышленности (воздуха, азото-водородной смеси, углеводородов и т. д.). Наряду с предварительной осушкой и очисткой воздуха цеолиты могут применяться и для очистки продуктов его разделения, например очистка аргона от кислорода и других примесей (азота, водорода и углеводородных газов). [c.111]


    В практику очистки аргона, гелия и других инертных газов от следов кислорода и азота довольно щироко входит металлический литий в расплавленном или твердом диспергированном состоянии он поглощает азот даже лучще, чем кислород. Как поглотитель щирокого спектра действия зарекомендовал себя губчатый титан. Если варьировать температуру газового потока от 300 до 800°, то губчатым титаном можно задержать азот, кислород, влагу и водород. Наконец, тонкая очистка инертных газов от ничтожных следов азота и кислорода достигается применением азотита — пылевидного металлического титана, охлажденного до температуры жидкого азота. Интересно, что сочетание именно низкой температуры с высокой дисперсностью благоприятствует повышению поглощающей способности азотита к газам в десятки раз. Кстати, распылением азотита достигается глубочайший вакуум. [c.111]

    Применение водорода для очистки аргона от кислорода было использовано еще в 1913 г. Сущность предложенного метода получения аргона состоит в том, что кислород, обогащенный аргоном до 2,5—3%, сжигался в специальной горелке со стехиометрическим количеством водорода. [c.70]

    Применение водорода для очистки аргона от кислорода было использовано еще в 1913 г. [83]. Сущность предложенного метода получения аргона состояла в том, что кислород, обогащенный аргоном до 2,5— 3%, сжигался в специальной горелке со стехиометрическим количеством водорода. Горелка размещалась в стеклянном или кварцевом цилиндре с водяной рубашкой для охлаждения стенок цилиндра. Из 5 кислорода с содержанием 96% Оа на установке получалось ежедневно 120— 150 л аргона чистотой 97—98%. [c.75]

    Из сжиженной части воздуха в разделительных колонках первым испаряется азот, затем аргон с примесью азота и кислорода. Для очистки от кислорода к смеси примешивают водород и вводят в нее катализатор, благодаря чему кислород превращается в пары воды. После удаления водяных паров остается азот-аргоновая смесь (до 86% Аг и 14% N2), имеющая самостоятельное применение для наполнения многих осветительных ламп. Если необходимо, то аргон освобождают от азота. [c.316]

    Из сжиженной части воздуха в разделительных колонках первым испаряется азот, затем аргон с примесью азота и кислорода. Для очистки от кислорода к смеси примешивают водород и вводят в нее катализатор, благодаря чему кислород превращается в пары воды. После удаления водяных паров остается азот-аргоновая смесь (до 86% Аг и 14% N2), имеющая самостоятельное применение для наполнения многих осветительных ламп. Если необходимо, то аргон освобождают от азота. Криптон и ксенон остаются в кислородной фракции и после концентрирования из нее могут быть выделены в виде смеси 90% криптона и 10% ксенона. [c.394]


    Предложение использовать дешевый медно-никелевый катализатор для беспламенного горения водорода с последующим связыванием непрореагировавших кислорода и водорода на окиси меди не нашло применения в промышленности, поскольку испытания подобной опытной полупромышленной установки, проведенные в 1950—1951 гг. ВНИИкимашем, показали, что достаточная степень очистки аргона от кислорода достигалась лишь при высоких температурах и объемных скоростях порядка 1500 ч К [c.114]

    Эта смесь поступает затем в один из двух адсорберов, где цеолиты селективно адсорбируют кислород. Чистый аргон проходит затем переохладитель 3, сепаратор 4 и с помощью аргонного насоса 5 нагнетается через теплообменник (на схеме не показан) в баллоны. Орошение конденсатора колонны 1 и охлаждение цеолита (типа 4А) производится с помощью жидкого азота. Такая схема очистки аргона от кислорода исключает применение водорода и промежуточный подогрев газа. [c.150]

    Очень хороший метод очистки азота (а также водорода, аргона и некоторых других газов) от кислорода основан на применении активированной меди, нанесенной на силикагель .  [c.19]

    В работе применяли технический водород, который подвергали очистке, последовательно пропуская его через нагретую медь, аскарит и перхлорат магния. Таким же образом очищали аргон, применение которого будет описано ниже. Этилен (марки X. ч. ) осушался над перхлоратом магния и для удаления кислорода пропускался через восстановленную окись меди. Далее для удаления любых примесей, могущих служить ядом для данной реакции, этилен с добавкой небольшого количества водорода пропускали над поликристаллическим никелем. [c.40]

    Каталитическое гидрирование кислорода с помощью углеводородов и аммиака. Для обеспечения последующих стадий технологического процесса производства аргона наиболее предпочтительна каталитическая очистка сырого аргона от кислорода с помощью водорода. Однако получение электролитического водорода обходится дорого, поскольку требует специальной и к тому же взрывоопасной установки. В го же время для связывания кислорода могут быть использованы и другие горючие газы, например углеводороды или аммиак. При использовании углеводородов в результате реакции образуются в основном водяной пар и углекислый газ. Однако в этом случае не исключена возможность загрязнения очищаемого газа непрореагировавшим кислородом или углеводородами и продуктами их разложения, в частности водородом. При применении углеводородов очищаемый инертный газ подвергается дополнительной, более сложной обработке, чем при использовании электролитического водорода. В связи с этим углеводороды практически не применяются для очистки инертных газов каталитическим гидрированием кислорода. [c.120]

    Графитация карбонизованного волокна осуществляется прп очень высоких температурах (до 3000 °С), в инертной среде, обычно азоте или аргоне. На этой стадии еще в большей мере, чем при карбонизации, необходима тщательная очистка защитных газов от следов кислорода, а также применение аппаратуры, исключающей попадание кислорода воздуха в реакционное пространство. В заявке [98] описан способ графитации волокна в печи, засыпанной углем процесс проводится под давлением инертного газа при повышении температуры до 2600 °С со скоростью 2000 °С/ч. В этих условиях получаются графитированные нити с прочностью 246 кгс/мм и модулем Юнга 42-10 кгс/мм . В работе [19] отмечается влияние характера среды при карбонизации на прочность графитированного волокна. Графитация проводилась при 3000°С в течение 1 ч, а карбонизация в одном случае осуществлялась в водороде (до 430 °С) и затем в аргоне (до 1000 °С) в другом случае весь процесс карбонизации проводился в аргоне. Прочность волокна составила 168 и 119 кгс/мм соответственно. Поскольку волокно не подвергалось предварительному окислению, восстановительная среда на первой стадии карбонизации была более активной по сравнению с аргоном и способствовала структурообразованию углеродного скелета и тем самым улучшению свойств волокна. [c.195]

    Основными промышленными применениями процессов глубокого охлаждения являются разделение и очистка газов. Ректификация жидкого воздуха служит основным способом получения кислорода и азота, а также единственным способом получения неона, аргона, криптона и ксенона. В ректификационной колонне, предназначенной для концентрации из воздуха редких газов, может быть получен и концентрат с высоким содержанием гелия. Однако таким путем получают лишь небольшие количества гелия. В промышленных масштабах гелий получают из природных газов, причем и в этом случае использование глубокого охлаждения значительно облегчает процесс разделения. Низкие температуры применяются в промышленности для получения водорода из коксового газа, а также из других газовых смесей, содержащих водород. Методами низкотемпературной ректификации выделяют и очищают низкокипя-щие компоненты природного газа метан, этан, этилен и т. д. Наконец, положено начало промышленному производству дейтерия путем ректификации жидкого водорода. [c.91]


    В случае применения цеолитов нет необходимости производить нагревание сырого аргона перед очисткой, исключаются потребность в водороде, система циркуляции для уменьшения концентрации кислорода на входе в реактор, компрессоры, осушители, реципиенты сравнительно большого объема. Однако, как и при всяком адсорбционном процессе, установка с цеолитами требует переключений аппаратов, работающих в периодическом режиме, и регенерации адсорбента, включающей ряд операций (отогрев, продувку аргоном, гелием, охлаждение, повторную продувку аргоном). Поэтому целесообразность широкого внедрения адсорбционной системы очистки в отечественную практику производства чистого аргона требует тщательного изучения и проверки. [c.119]

    Представляет интерес в связи с этим схема установки для очистки аргона от кислорода, работающей под повышенным давлением и с применением циркуляционного эжектора вместо циркуляционной газодувки [38]. В этом случае сырой аргон сжимается с помощью компрессора до 150 кГ1см , поступает в эжектор и, расширяясь до 20 кГ см , эжектирует аргон, очищенный от кислорода. Полученная смесь с пониженным содержанием кислорода поступает в пароподогреватель и затем в контактный аппарат. В последний также под давлением подается водород. Очищенный от кислорода аргон проходит блок осушки и направляется для дальнейшей очистки от азота. [c.119]

    Следует отметить, что приоритет в применении аммиака вместо водорода принадлежит отечественным исследователяхМ. Использование азото-водородной смеси, получаемой при диссоциации аммиака, в качестве восстановителя контактной массы в установках для очистки сырого аргона от кислорода описано с журнале Кислород в 1957 г. [4]. Несколько позже, в 1959 г., в США выдан патент на схему установки для очистки аргона от кислорода с помощью аммиака [62]. Поскольку предлагаемая схема установки является разновидностью метода каталитического гидрирования кислорода с использованием платинового катализатора, приведем ее описание (рис. 42). [c.121]

    Вакуум используется для химической очистки расплава от растворенных газов, посторонних примесей, обладающих высокой упругостью пара, и продуктов термической диссощшции. Глубина вакуума определяется величиной упругости пара кристаллизуемого вещества в расплавленном состоянии. Наиболее часто используется вакуум порядка 5 10 тор. С целью снижения интенсивности испарения расплава применяется нейтральная атмосфера (гелий, аргон, азот), поскольку для этих газов разработаны достаточно эффективные способы химической очистки. Восстановительная атмосфера используется для предотвращения окислительных реакций. Например, при выращивании монокристаллов флюорита СаРг атмосфера фтористого водорода препятствует развитию реакций гидратации с образованием частиц типа СаНСОз, а выращивание металлических монокристаллов в атмосфере водорода позволяет получать бескислородные монокристаллы. Окислительная атмосфера используется для компенсации потери кислорода при выращивании монокристаллов-оксидов [16]. Применение окислительной атмосферы, однако, ограничено интенсивным окислением материала контейнера и элементов нагревательной системы кристаллизационной установки. Поэтому обычно используется либо вакуум, либо нейтральная атмосфера. Компенсацию кислорода осуществляют путем отжига в кислородсодержащей атмосфере при температуре (1/2 1/3) Год, где Тпл — температура плавления. Эту операцию называют кислородным отжигом. Экспериментальные исследования свидетельствуют о том, что нарушение состава оксидов в сильной степени зависит от интенсивности реакций их термической диссоциации [17]. Эти реакции сопровождают как процессы плавления, так и кристаллизации. [c.15]

    Можно получить обогащенную неоном и гелием фракцию воздуха без применения жидкого водорода. Так, Рамзай и Траверс пропускали в 1900 г. в замкнутом цикле компримированный воздух через спираль Гампсона. В результате постепенного сжижения воздуха удавалось в несжиженной части воздуха получить значительное содержание неона и гелия. После очистки несконденсированной части воздуха от кислорода и азота был получен аргон с 10%-ным содержанием неона и гелия. Этот метод в свете современных потребностей в неоне и гелии имеет чисто историческое значение. [c.43]


Смотреть страницы где упоминается термин Водород, применение для очистки аргона от кислорода: [c.170]    [c.147]   
Разделение воздуха методом глубокого охлаждения Том 2 (1964) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Аргон

Аргон водород

Аргон кислород

Аргон применение

БГК и кислорода и водорода

Водород применение

Водород, применение для очистки аргона

Кислород применение

Очистка аргона от кислорода

Очистка применение



© 2025 chem21.info Реклама на сайте