Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азот, методы очистки

    Преимущество цеолитов — их способность избирательно поглощать сероводород, меркаптаны и тяжелые сернистые соединения из потоков газа, Наибольшее применение находят цеолиты типа А и X, Цеолиты регенерируются очищенным природным газом или азотом при 300—350 °С. Адсорбционные методы очистки экономичны для невысоких содержаний извлекаемых соединений и при отсутствии в приро. июм газе тяжелых углеводородов, Кроме того, существует проблема очистки регенерационного газа. [c.200]


    Методы очистки газов от оксидов азота можно разделить на окислительные, восстановительные и сорбционные. [c.63]

    Селективное восстановление оксидов азота с помощью аммиака. Занимает особое место среди каталитических методов очистки газов [c.65]

    Остаток промывной колонны содержит значительное количество метана, СО, аргона и других примесей. После их отделения от азота во второй колонне последний возвращается в промывную колонну. Легкие фракции из второй колонны после теплообменника выводятся в виде товарной окиси углерода. Метод очистки водорода от СО жидким азотом более экономичен по сравнению с методом медно-аммиачной очистки. Недостающее для синтеза аммиака количество азота в этом случае добавляется к водороду в виде газообразного азота. [c.111]

    Метод обеспечивает содержание оксидов азота в очищенных газах до 0,005%. Тепло реакции используется для получения пара. Необходимо отметить, что данный метод очистки газов органически связан с технологией производства и затраты на него минимальные. [c.217]

    При проектировании противоточных конденсаторов выбор скорости газа может лимитироваться скоростью захлебывания. Оптимальное давление при очистке гелия от азота методом конденсации лежит в пределах 9-12 МПа. При давлении 10 МПа и температуре кипящего под атмосферным давлением азота может быть достигнута максимальная чистота гелия, равная 98,5 % [9]. Дальнейшие повышение давления, например до 18 МПа, и понижение температуры вплоть до температуры тройной точки азота приводит к увеличению концентрации гелия менее чем на 0,5 %. Таким образом, при разделении [c.163]

    Для нормальной работы низкотемпературной аппаратуры ожижительной установки газообразный водород требуется предварительно очищать до содержания примесей 10 —10 объемных долей. Существующие методы очистки водорода позволяют удовлетворить указанные требования. Так, метод каталитического восстановления позволяет очистить водород от кислорода до содержания последнего 10" ° объемных долей, а методом адсорбции можно очистить водород от азота и кислорода до содержания их не более 2- 10 ° объемных долей [27]. [c.60]

    Для обеспечения взрывобезопасности разделительных операций вводятся жесткие ограничения допустимого содержания окислов азота, в сжижаемых газах от 0,01 до 0,05 миллионных долей по объему, что достигается с помощью специальных методов очистки. После прохождения через блок определенного количества окислов азота блок размораживают и освобождают от накопившегося конденсата. [c.85]


    Более эффективным методом очистки АВС от оксида углерода (П) является применяемая в современных установках промывка АВС жидким азотом при -190°С, в процессе которой из нее удаляются, помимо оксида углерода (П), метан и аргон. [c.194]

    В качестве примера использования газо-адсорбционной хроматографии для выделения веществ в препаративных целях можно привести фронтально-хроматографический метод очистки природного метана. Природный газ, содержащий примерно 96—98% метана и 2—4% воздуха и других углеводородов, пропускают через колонку, заполненную углем марки СКТ. Более тяжелые, чем метан, углеводороды задерживаются на угле, а метан и воздух проходят колонку не адсорбируясь. На выходе из колонки метан конденсируется в ловушке, охлаждаемой жидким азотом. Таким образом получают метан 99,9% чистоты. [c.66]

    Очень хороший метод очистки азота (а также водорода, аргона и некоторых других газов) от кислорода основан на применении активированной меди, нанесенной на силикагель .  [c.19]

    Этот метод очистки является одним из наиболее эффективных. Он имеет особо важное значение, так как дает возможность отдел ять азот. ..  [c.95]

    Для очистки полученного этим способом водорода применяют также более эффективный диффузионный метод очистки (см. стр. 95), предусматривающий удаление из водорода следов азота. [c.99]

    Наиболее эффективным и быстрым методом очистки азота от трудно отделяемых примесей аргона и кислорода является метод адсорбционной хроматографии на активированных молекулярных ситах типа 5А. [c.180]

    Для очистки газа от примесей применяют такую же установку, какая описана прн получении закиси азота методом разложения нитрата аммония (см. рис. 69, стр. 186). [c.191]

    Ввиду того, что равновесие в системе графит - водород сильно зависит от температуры, причем с повышением температуры количество метана уменьшается и при 1000 °С близко к нулю, возможен перенос углерода из мест с более низкой температурой в места с более высокой температурой (где углерод может осаждаться). При взаимодействии с диоксидом углерода направление переноса массы углерода имеет обратное направление - от более горячих мест к менее горячим. Водород не образует с графитом слоистых соединений. Хемосорбция водорода происходит по активным местам, на что указывает полное прекращение хемосорбции водорода после адсорбции кислорода на поверхности графита при температуре жидкого азота. При повышенных температурах водород реагирует с адсорбированным на графите кислородом, что является эффективным способом удаления поверхностных оксидов с графита, т.е. методом очистки его поверхности. [c.127]

    Снижения содержания ЗОг в дымовых газах можно достигнуть двумя путями 1) очисткой котельного топлива от серы (гидрообессеривание) и 2) очисткой дымовых газов. О гидрообессеривании нефтяных остатков сказано в гл. УП. Для очистки дымовых газов разработан ряд методов — мокрая очистка растворами различных оксидов и солей (аммиачно-бисульфитный, магнезитовый и другие методы) и сухая очистка адсорбентами (активированным углем, оксидом меди и др.). Однако большие объемы газов, подвергаемых очистке, а также разнообразие компонентов (оксиды азота, оксид углерода, водяные пары, азот) обусловливают значительные трудности для создания достаточно экономичного метода очистки. Концентрацию оксидов азота в продуктах сгорания снижают, уменьшая коэффициент избытка воздуха, т. е. снижая содержание кислорода в зоне горения. [c.320]

    Очистка нефтяных продуктов от серы, а также от смолообразующих веществ, азота, металлов и других примесей, снижающих качество этих продуктов, применяется в нефтеперерабатывающей промышленности со времени ее зарождения. Требования неуклонного повышения качества нефтепродуктов настолько велики, что методы очистки, вполне удовлетворительные в прошлом, в настоящее время уже непригодны. С развитием каталитических процессов крекинга и риформинга, перерабатывающих различные нефтяные фракции, а также в связи с передачей некоторых из этих фракций для последующей переработки на химические и нефтехимические предприятия, выявилась необходимость глубоко очищать от указанных примесей не только товарные продукты, но и сами фракции. [c.49]

    Наибольшее число исследований и публикаций посвящено очистке дымовых газов. По данным [48], проведены промышленные и опытно-промышленные исследования по 26 процессам очистки дымовых газов от сернистого ангидрида с применением неорганических твердых веществ, их растворов и взвесей, 34 процессам растворами органических веществ и 10 процессам другого типа. Наличие такого большого числа процессов и методов очистки, из которых пока ни один не получил широкого промышленного применения, указывает на сложность решения проблемы. Необходимо создать процесс не только конкурирующий с гидрообессериванием топлива, но и доступный для технологического оформления, учитывая большие объемы дымовых газов, подлежащих очистке, и наличие в них разнообразных компонентов (кислорода, окислов азота, окисей углерода, водяных паров, золы, окислов металлов и т. д.). Методы очистки дымовых газов можно разделить на мокрые и сухие . [c.134]


    В настоящее время ведут интенсивные исследования методов очистки выхлопных газов от оксидов азота, позволяющих не только обезвредить выхлопные газы, но и увеличить степень использования связанного азота. В качестве окислителя оксидов азота предложены озон, пероксид водорода, перманганат калия и другие жидкие окислители [61]. Принцип подбора таких реагентов, химизм, механизм н кинетика процесса описаны в работе [12]. [c.62]

    Пример 8. Прп изученип аммиачного способа очистки отходящих газов от окислов азота методом ДР ( /4 реплики) было получено уравнение регрессии [18] [c.161]

    В сентябре 1972 г. на IV сессии Верховного Совета СССР принято постановление О мерах по дальнейшему улучшению охраны природы и рациональному использованию природных ресурсов . В соответствии с этим постановлением в химической промышленности осуществлены крупные организационно-технические мероприятия, направленные на сокращение вредных газовых выбросов. Однако на ряде предприятий в атмосферу все еще выбрасывается значительное количество окислов азота, сернистого и серного ангидрида, сероводорода, сероуглерода, хлора и его производных, окиси углерода, карбидной пыли, сажи и других вредных газов и пылей. Поэтому при дальнейшем увеличении мощностей химических и нефтехимических производств следует разрабатывать технологические процессы с комплексной переработкой сырья, внедрять более эффективные методы очистки газовых выбросов, создавать долговечное герметичное оборудование. Все это позволит уменьшить вероятность возникновения аварий и создать безопасные и здоровые условия труда в химической и нефтехимической промышленности, а также повысить культуру производства. [c.12]

    Реже используются щелочная или кислотная абсорбция оксидов азота, термическое оксидирование, нейтрализация карб-амидными растворами. При щелочной абсорбции нитрозные газы абсорбируются содой, известковым молоком, гидроксидом натрия, смесью Mg(0H)2 и Mg Os. Щелочная абсорбция оксидов азота целесообразна, когда требуется получение дополнительно нитритов или нитратов или когда,нельзя применить другой метод очистки. [c.214]

    Адсорбционной очистке подвергаются масла, уже очищенные серной кислотой или селективными растворителями. При этом применяют два метода — очистку контактированием с тонкоизмель-ченной отбеливающей глиной (контактная очистка) и фильтрацию через ее слой. Гидроочистка применяется для удаления из масел соединений, содержащих серу, азот и кислород. [c.266]

    Эффективный метод очистки водорода от примесей, в частности от азота и пнертных газов, основан на диффузии его через раскаленную пластинку из металлического палладия или из сплавов палладия с золотом или серебром. Схематично установка для очистки газа этим методом представлена на рис. 15. Водород, очшцвНЕЫЙ от примеси As и Sb щелочным раствором КМпО , вводят в Палладиевую ампулу 7, расположенную в кварцевой трубке 3 в обогреваемую электропечью 2. Кварцевую трубку предварительно тщательно вакуумируют. Через стенку палладиевой ампулы в трубку диффундирует чистейший водород, содержащий не более 10"7% азота и кислорода. Удобно пользоваться для термодиффузионноы очисткл водорода специальным аппаратом , производительностью 35 л/ч. [c.87]

    Очистка редких газов от некоторых сопровождающих примесей (кислород, азот, двуокись углерода, водяные пары) может быть проведена химическими методами и не вызывает затруднений. Вазделеаие смеси редких газов друг от друга в оановном осуществляется с применением физических методов адсорбции и фракционированной конденсации и дистилляции. При этом а каждом отдельном случае необходимо учитывать относительные количества индивидуальных газов в смеси и другие условия. Вследств-ие этого существующие методы очистки и разделения редких газов в основном разработаны для частных случаев в других случая , требуется изменение методики работы.. [c.294]

    Метод очистки диоксана заключается в разложении ацеталя соляной кислотой. К 1 л технического диоксана приливают раствор 14 мл концентрированной соляной кислоты в 100 мл воды. Смесь нагревают 6—10 часов с обратным холодильником. Во время нагревания через прибор медленно пропускают ток азота для удаления образовавшегося уксусного альдегида. По охлаждении в раствор вводят твердое едкое кали до прекращения растворения. Водный слой отделяют и диоксан сушат едким кали 24 часа. После этой предварительной осушки жидко5ть нагревают 6—12 часов с натрием (обратный холодильник). Чистый диоксан перегоняют над натрием т. кип. 101 т. пл. 12°. Очищенный диоксан следует предохранить от соприкосновения с воздухом. [c.161]

    Описано разделение неон-гелиевой омеси, содержащей около 60% гелия и азота °. Предварительная очистка от примесей, удаляемых химическими методами, проводится та же,- как описано при получении чистого гелия. Остаточиый газ содержит неон, гел ий и небольшое количество азота. Затем проводится адсорбция на хабазите. при температуре жидкого азота. При этих услов иях гелий почти ие адсорбируется, а азот адсорбируется лучше, чем неон. При десорбции откачивают неон азот, содержащий лримесь неона, улерж-ивается сорбентом. Процесс повторяют несколько раз. Эффективность разделения контролируют спектроскопическим исследоваиием фракций. [c.294]

    Сотрудниками кафедры (доц. Б. А. Жидков, Ю. В. Князев) совместно с отделом каталитической очистки Института физхимии АН УССР и Днепродзержинским филиалом ГИАПа разработан каталитический метод очистки отходящих нитрозных газов производства слабой азотной кислоты путем восстановления окислов азота аммиаком на неплатиновом катализаторе. Определены условия приготовления высокоизбирательных механически прочных катализаторов выведены уравнения кинетики, предложена технологическая схема очистки. Разработанный метод очистки позволяет полностью очищать отходящие газы от окислов азота при незначительном расходе аммиака. [c.128]

    Принципиальная схема адсорбционного метода очистки газов от окислов азота представлена на рис. 2.7. Аппаратурно на стадиях окисления N0 в N02, адсорбции N02 и его десорбции процесс реализуется с применением кипящего слоя. О масштабах установки могут дать представлсппе следующие цифры. При температуре слоя 12°С, высоте 9,7 см, скорости газов 0,12 м/с и содержании в них Н0г=0,5% за 1 мин 1 кг сорбента-силикагеля поглощает 1 г N 2. Повышение температуры до 40°С уменьшает поглощение в 2 раза. [c.66]

    Э. используют в полупром. масштабах для глубокой очистки металлов (Ga, In, РЗЭ) в жидкой фазе. Для РЗЭ Э. в твердом состоянии - осн. метод очистки, т. к. РЗЭ реагируют со всеми газами, кроме благородных, и здесь недоступны традиц. методы очистки, особенно от примесей кислорода, азота и углерода. Э. применяют для выращивания монокристаллов и эпитаксиальных слоев полупроводниковых соед., напр. GaAs (элжтроэпитаксия). Э. в тв дой фазе - одна из причин отказов полупроводниковых приборов и электронных устройств, работающих при высоких плотностях тока. Изучение закономерностей Э. позволяет сильно увеличить срок службы этих приборов. В области Э. можно ожидать новых открытий, особенно в случаях Э. на фанице твердых и жидких фаз, при фазовых переходах. Об этом свидетельствует факт аномально высокой подвижности примесей при зонной плавке и резании металлов (эффект Бобровского). [c.453]

    Результаты опытов дали возможность сделать заключение о перспективности применения цео.литов д.ля совмещенного метода очистки воздуха от двуокиси углерода и его глубокой осушки. Полученные данные легли в основу разработки схемы и технологического регламента опытно-промышленной трехадсорберной установки подготовки воздуха к низкотемпературному разделению. Адсорберами служили баллоны высокого давления емкостью 500 л. Регенерация проводилась нагревом цеолитов до 150 °С с помощью отходящего азота, а охлаждение — тем же азотом при обычной температуре (20 °С). [c.408]

    Водород, используемый для гидрирования бензола, содержит некоторое количество инертных компонентов (азот, метан и другие), причем концентрация водорода в газе за]зисит от качества исходного природного газа и метода очистки водорода и составляет обычно 90 и 97% (об ) В водороде регламентируется содержание окиси и двуокиси углерода —не более 0,002% (об) каждой, аммиака — до 0,0002% (об.) и общей серы — до 2 мг/м  [c.26]


Смотреть страницы где упоминается термин Азот, методы очистки: [c.8]    [c.142]    [c.61]    [c.117]    [c.238]    [c.394]    [c.623]    [c.179]    [c.249]    [c.292]    [c.221]    [c.45]    [c.328]   
Окисление металлов и сплавов (1965) -- [ c.219 ]




ПОИСК





Смотрите так же термины и статьи:

Азот очистка

Метод очистки



© 2024 chem21.info Реклама на сайте