Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк, действие его на катализаторы

    Вещества, снижающие активность катализатора вследствие его отравления , называют каталитическими (контактными) ядами. Незначительное количество контактного яда может сильно замедлить или полностью подавить действие катализатора. Для никелевых и платиновых каталпзаторов ядами служат сероводород, соединения мышьяка, окись углерода, галогены для алюмосиликатных — вода и водяной пар, сернистые и азотистые соединения, мышьяк и соли тяжелых металлов, содержащиеся в крекируемом сырье и в применяемых реагентах. Действие каталитических ядов заключается в химической адсорбции их на поверхности катализатора, особенно на его активных центрах они как бы. обволакивают катализатор, затрудняя доступ молекул реагирующих веществ к его поверхности. [c.18]


    Платиновый катализатор весьма чувствителен к действию различных примесей газообразных и твердых (пыли) веществ. Особенно вредным является углерод, образующийся при разложении нестойких в условиях синтеза углеводородов. Катализатор отравляется необратимо под влиянием этилена, пропилена и высших олефинов и особенно при наличии в газе 0,1% ацетилена. Присутствие в газе до 0,1% сероводорода приводит к обратимому отравлению катализатора. В отсутствие сероводорода в газе катализатор, ранее отравленный сероводородом, быстро восстанавливает свою активность. Содержание окисн углерода до 8—10% не оказывает влияния на действие катализатора, а присутствие водорода в некоторой степени благоприятно сказывается на работе катализатора, предотвращая отложение углерода на его поверхности Резкое снижение активности катализатора происходит при попадании на него л<елеза, меди, свинца, а также при содержании в газе ничтожных количеств (0,00001%) соединений фосфора и мышьяка. Поэтому исходные реагенты — метан, аммиак и воздух — тш.а- [c.482]

    Третьим распространенным механизмом действия катализаторов является активирование путем превращения одного из реагентов в радикалы (радикалообразование). Такой механизм характерен для многих реакций окисления перекисью водорода в щелочной среде, окисления тиосульфата до тетратионата, восстановления персульфата до сульфата, окисления соединений мышьяка (П1), олова (И) и др. Для того чтобы катализатор мог способствовать образованию радикалов, он должен обладать окислительными или восстановительными свойствами и присоединять или отдавать при этом по одному электрону. Образовавшиеся радикалы настолько реакционноспособны, что резко увеличивают скорость реакции. Каталитические реакции с радикалообразованием отличаются исключительно большой чувствительностью (нанограммовый и пикограммовый диапазоны). Между вторым и третьим механизмами катализа существуют промежуточные, так как многие комплексы с переносом заряда распадаются, образуя свободные радикалы  [c.76]

    Тяжелые металлы — свинец и мышьяк — действуют подобно фосфатам, образуя тонкие дезактивирующие пленки. Дезактивация и засорение катализатора могут быть обусловлены присутствием [c.190]

    В ряде случаев присутствие некоторых веществ замедляет или даже практически полностью подавляет действие катализатора. Такие вещества называются соответственно ингибиторами или каталитическими ядами. Так, небольшая примесь окиси углерода отравляет медный катализатор, каталитическое действие платины сильно отравляется селеном и мышьяком, а для железного катализатора такими ядами являются соединения серы (НгЗ), кислород и его соединения (СО, Н2О и др.). [c.159]


    Кроме того, свойства твердых катализаторов могут ухудшаться из-за отравления их поверхности как вследствие адсорбции посторонних веществ (ядов), так и в результате протекания самой реакции. Примером действия ядов является отравление различными соединениями мышьяка платинового катализатора, применяемого при контактном способе производства серной кислоты. [c.407]

    Кроме того, свойства твердых катализаторов ухудшаются из-за отравления их поверхности в результате адсорбции посторонних веществ ( ядов ), а также непосредственно в результате протекания самой катализируемой реакции. Примером действия ядов может служить отравление поверхности платинового катализатора различными соединениями мышьяка. Эти соединения прочно адсорбируются на многих активных центрах и снижают эффективность действия катализатора по отношению к ускоряемой реакции. [c.276]

    Эффективно действующие катализаторы полимеризации можно приготовить из литийорганических соединений и солей, имеющих комплексные анионы, содержащие бор, кремний, мышьяк или тяжелые металлы [26], подобно сложным катализаторам, содержащим металлический литий, описанным в разделе Б. Типичные комплексные анионы, используемые для приготовления сложных катализаторов, приведены в табл. 25. [c.258]

    Щелочные растворы оказывают на катализатор неблагоприятное действие, так как после испарения щелочь оседает на его поверхности. При мышьякОво-поташной очистке синтез-газа в результате попадания на катализатор раствора, содержащего незначительные следы мышьяка, активность катализатора резко снижается. Через 2 года эксплуатации содержание мышьяка в катализаторе достигает 0,05% [136]. [c.338]

    Согласно этому механизму, предполагается, что треххлористый мышьяк под действием катализаторов Фриделя — Крафтса действует как электрофил входящий мышьяк ведет себя как соседняя группа , взаимодействуя с возникающим карбокатионным центром и образуя при этом арсониевую соль IX, которая подвергается дальнейшим превращениям . Однако измерения скоростей реакции, позволяющие установить зависимость реакционной способности от структуры олефина или ацетилена, не проводилось, и природу процессов, определяющих скорость реакции, предстоит выяснить в будущем. [c.231]

    Есть вешества, которые подавляют действие катализатора. Эти вещества называются каталитическими ядами. Так, небольшое количество окиси углерода отравляет медный катализатор, каталитическое действие платины сильно отравляется мышьяком и селеном. Вообще, для большинства каталитических процессов каталитическими ядами являются сернистые, мышьяковистые, кислородные и цианистые соединения. С целью удлинения продолжительности действия катализатора в промышленных условиях в большинстве случаев производят тщательную очистку реагирующих веществ от каталитических ядов. Так, например, ЗОз в производстве серной кислоты очищают от соединений мышьяка, в производстве ННз и при технических процессах гидрогенизации освобождают водород от сернистых соединений и окиси углерода. [c.299]

    Действие мышьяка подобно действию серы потеря производительности катализатора природного газа заметна по увеличению содержания метана на выходе и по перегреву труб, особенно в верхней части. При риформинге нафты в конечном газе увеличивается содержание ароматических соединений и этана. Найдено, что образцы отравленного катализатора из верхней части труб промышленного реактора содержат до 1000 ч/млн Аз Од. Образцы из нижней половины труб обычно не загрязнены и содержат менее 10 ч/млн АЗаОз (как в новом катализаторе). [c.105]

    В отделении очистки обжиговый газ освобождается от примесей селена и теллура и примесей, ухудшающих действие катализатора (соединения мышьяка и фтора, пыль) или, недопустимых [c.23]

    Характер действия тех или иных ядов может быть различным. Так, например, свинец, ртуть, медь, вода и др. вызывают необрагимое отравление катализатора. Сернистые и азотистые соединения могут вызывать временное, обратимое отравление. Вместе с тем, при длительном воздействии сернистых соединений отравление зачастую бывает необратимым. Весьма сильный яд, вызывающий необратимое отравление, — мышьяк. Максимально допустимое содержание мышьяка в сырье составляет 10 % (масс.). [c.164]

    Примеси веществ, которые ослабляют или вообще прекращают действие катализатора, называются каталитическими ядами. Так, например, платиновый катализатор легко отравляется незначительными количествами соединений мышьяка, селена и теллура. Железный катализатор, используемый при синтезе аммиака, отравляется при содержании в газах, поступающих в контактный аппарат, 0,1% серы. [c.126]

    В присутствии цеолитов в поливалентной катионной и аммонийной форме с диаметром эффективных полостей 6—15 А подвергали реакции трансалкилирования смесь ароматических углеводородов, содержавшую С и толуол 137]. В качестве матрицы использовали окись алюминия (20 вес.%). Катализаторы содержали от 0,05 до 5 вес.% металлов VHI группы периодической системы элементов. Для усиления селективности действия катализатора вводили мышьяк, сурьму, висмут, селен, теллур или их комбинацию. Например, применяли декатионированный цеолит типа Y (или морденит), содержащий платину и мышьяк (на 1 атом платины 0,4 атома мышьяка). Реакция может протекать в газовой или жидкой фазе в среде смеси толуола и 1,2,4-триметилбензола при 450—500 °С, 35 кгс/см , отношении На углеводороды 8—10 1, объемной скорости 2 ч" . Анализ полученных продуктов указывал на происходящий процесс трансалкилирования, сопровождающийся высоким выходом ксилола, и на отсутствие неароматических углеводородов. [c.127]


    Получившие за последнее время громадное промышленное распространение ванадиевые катализаторы показали себя значительно более устойчивыми по отношению к так называемым контактным ядам, чем платиновые. Исследуя отравление мышьяком, Б. Нейман нашел, что контактное действие пятиокиси ванадия при прибавлении окислов мышьяка не увеличивается, но и не уменьшается картина однако меняется, если окислы мышьяка действуют не на чистую ванадиевую кислоту, а на ее металлические соли тогда выход довольно сильно падает. [c.82]

    Кроме того, различают вещества, которые, адсорбируясь на катализаторе, полностью прекращают его действие, вызывая как бы отравление катализатора. Эти вещества (мышьяк, синильная кислота, сулема и др.) называются каталитическими ядами. [c.124]

    Поверхностные соединения образуются также другими хорошо известными ядами серой, мышьяком и фосфором, и oiin, вероятно, более стабильны, чем соединения кислорода, поэтому восстановление каталитической активности после отравления происходит очень медленно, если вообще оно происходит. Более низкие концентрации этих элементов (предположительно, одна десятая от концентрации кислорода) производят аналогичное отравляющее действие. Хлор, вероятно, вызывает дезактивацию по механизму, описанному в гл. 2, и, поскольку КС1 обладает летучестью, то это приводит к потере щелочи из катализатора. [c.164]

    В противоположность сере, отравление мышьяком является необратимым процессом, и, следовательно, предельно допустимая концентрация мышьяка в реагирующих веществах, ниже которой не происходит отравления, очень низка. Мышьяк, присутствующий в любой концентрации, будет накапливаться в катализаторе. Как и в случае серы, его действие будет незаметным, пока не произойдет отравление небольшой части катализатора, находящейся при низких температурах около входа в риформер. Действие задерживается, пока яд накапливается в катализаторе и в самой установке. В одном эксперименте, в котором нафта подвергалась риформингу на катализаторе 46-1 при давлении 20 ат и температуре на выходе катализатора 785° С, действие 1 ч/млн в паре стало заметным только через [c.105]

    Прокопчик [42] изучал действие многих добавок на активность катализаторов. Гидроокись железа теряет свои каталитические свойства в присутствии избытка твердой (нера-створенной) гидроокиси кальция в растворе. Интенсивное ингибирующее действие оказывает двуокись кремния. Действие катализаторов подавляется также присутствием солей хрома, мышьяка, свинца. [c.13]

    Из факторов, от которых зависит отравление катализаторов, необходимо отметить температуру, давление и метод изготовления контактов. Повышение температуры, как правило, снижает действие антикатализаторов. Так, например, очень чувствителен к отравлению мышьяком, но при 500° он к AsjO, становится нечувствительным кислородсодержащие газы при 400° парализуют аммиачные катализаторы гораздо сильнее, чем при 515° (П. В. Усачев и [c.72]

    Из других низкотемпературных гидрирующих катализаторов, также легко отравляющихся серой, можно назвать платину и палладий. Помимо серы, отравляющим действием на катализаторы этой группы обладают азот, кислород, мышьяк и другие элементы V й VI групп. [c.268]

    Окислительные методы более совершенны HgS, абсорбированный щелочным поглотительным раствором, окисляется под действием катализатора, содержащегося в растворе, с выделением серы. Преимущества процессов этого тина — высокая полнота извлечения серы и легкость регенерации поглотительного раствора простым окислением воздухом. С другой стороны, применяемые катализаторы обычно ядовиты или физиологически вредны. К второй группе относятся, в частности, процессы тайлокс и Джаммарко-Ветрокок, в которых катализатором служат соединения мышьяка. [c.222]

    Под действием каталитических ядов в процессе эксплуатации катализаторы могут частично или полностью потерять свою активность. В ряде случаев, если не полностью, то частично возможно восстановить его активность после того, как прекратилось действие каталитического яда. Некоторые вещества отравляют катализатор необратимо. К каталитическим ядам следует отнести сероводород и органические соединения серы, соединения мышьяка, галогенов, фосфора, свинца и меди. Сырье (углеводороды) и водяной пар, поданные отдельно или нри малых концентрациях одного из компонентов, также можно рассдштривать как каталитические яды. [c.84]

    Отравление мышьяком является необратимым процессом и он будет накапливаться в катализаторе при любой его концентрации в сырье. Поэтому допустимая концентрация его в реагентах очень низка ( < 0,1 мг/м ). Действие мышьяка в никелевом катализаторе становится ощутимым, когда концентрация А 0 достигает 50/)/>л Образцу отравленного катализатора паровой конверсии содержат до 0,1  [c.45]

    Некоторые вещества снижают или полностью уничтожают активность твердого катализатора. Такие вещества называются каталитическими ядами. В качестве примера можно привести соединения мышьяка, ртути, свинца, цианистые соединения, к которым особенно чувствительны платиновые катализаторы. Для устранения их действия в производственных условиях реагирующие вещества подвергают очистке от каталитических ядов, а уже отравленные катализаторы регенерируют. [c.85]

    Наблюдается снижение активности сернокислотного ванадиевого катализатора при наличии в реакционной смеси соединений мышьяка [72—74]. Трехокись мышьяка оказывает общ ее дезактивирующее действие на ванадиевые катализаторы. В области температур 400—560°С соединения мышьяка связывают щелочные металлы, активирующие эти катализаторы [72]. При высоких температурах (650°С) проявляется новая форма вредного действия мышьяка, приводящая к улетучиванию пятиокиси ванадия в виде соединения АбаОд-УзОа. Как было показано, за 45 ч работы в присутствии мышьяка из катализатора улетучилось 46,6% исходного количества пятиокиси ванадия. Каталитическая активность при этом снизилась в 4 раза. При содержании мышьяка в сырье порядка 0,1—0,2 г активность ванадиевого катализатора в первом по ходу газа слое снизилась через месяц в 2 раза [74]. [c.20]

    Недостатком обычных ванадиевых ката дизаторов является то, что они становятся достаточно активными лишь при температурах начиная от 430—440°, и реакцию приходится начинать при более высокой температуре, чем на платине. Введением в состав ванадиевых контактных масс некоторых добавок этот недостаток может быть устранен. По сравнению с платиной ванадиевые катализаторы гораздо менее подвержены отравлению такие примеси в газе, как пары воды, хлор, хлороводород, сероводород, не влияют на активность ванадиевых катализаторов, а мышьяк действует на них во много раз слабее, чем на платину. [c.166]

    Эксперименты по отравлению мышьяком проводились фирмой Ай-Си-Ай при риформинге нафты на опытно-промышленных установках. Они показали, что действие мышьяка становится ощутимым, если содержание АзгОд в катализаторе 46-1 превышает 50 ч/млн. [c.105]

    Сера необратимо отравляет медь. Никелевые катализаторы отравляются серой и мышьяком. По отношению к металлам платиновой группы роль каталитических ядов играют хлориды, сера, мьпцьяк и свинец. Ингибирующее действие оказывают окись углерода, алкены и смазочные масла. [c.186]


Смотреть страницы где упоминается термин Мышьяк, действие его на катализаторы: [c.305]    [c.48]    [c.6]    [c.156]    [c.163]    [c.430]    [c.218]    [c.129]    [c.174]    [c.271]    [c.52]   
Синтез и катализ в основной химической промышленности (1938) -- [ c.81 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы мышьяка



© 2025 chem21.info Реклама на сайте