Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насадочные абсорберы работа

Рис. 7.27. Схема системы автоматического регулирования работы промышленного насадочного абсорбера Рис. 7.27. <a href="/info/1848156">Схема системы автоматического</a> <a href="/info/30884">регулирования работы</a> промышленного насадочного абсорбера

    Обычно использовали [30] два насадочных абсорбера, соединенных последовательно. Экспериментальные данные, полученные при использовании насадочных колонн для этих процессов, представлены в работах [14, 15, 17, 31, 32]. [c.131]

    Выбор плотности орошения и способа его подачи. При малой плотности орошения смоченная и активная поверхности невелики и работа насадочного абсорбера не эффективна. Поэтому при проведении процессов, для которых требуется низкое отношение LIG обычно прибегают к рециркуляции жидкости (см. стр. 215) и плотность орошения выбирают с таким расчетом, чтобы получить достаточно высокое значение коэффициента При этом можно пользоваться графиками и зависимостями, приведенными на стр. 446 сл. [c.486]

    X ч-кгс/см ) для первой ступени и 102-10 —153 10 м /(м X X ч-Па), или 100—150 м /(м -ч-кгс/см ) для второй ступени абсорбции. Эти значения A . a соответствуют условиям, при которых степень карбонизации насыщенного раствора не превышает 0,55, а насадочный абсорбер работает в пленочном режиме. [c.149]

    В чем особенности гидродинамических режимов работы насадочных колонн Почему в подавляющем большинстве случаев насадочные абсорберы работают в пленочном режиме  [c.98]

    Гидродинамические режимы. Насадочные абсорберы могут работать в различных гидродинамических режимах. Эти режимы видны из графика (рис. Х1-13), выражающего зависимость гидравлического сопротивления орошаемой насадки от фиктивной скорости газа в колонне. [c.445]

    Диаметр колонны определяют аналогично диаметру насадочных абсорберов по принятой скорости газа т в свободном сечении, площадь сечения находят по уравнению (17-19). При выборе скорости уи следует исходить из условий работы тарелок— в равномерном режиме или в режиме газовых струй и брызг (стр. 616). Скорость т не должна превышать некоторого предельного значения >пред. при котором резко увеличивается унос брызг жидкости на вышележащую тарелку. [c.623]

    Отдельные типы аппаратов в зависимости от режима работы могут быть отнесены к одной или другой группе, например, насадочные абсорберы при инверсии фаз становятся барботажными аппаратами, а тарельчатые при работе в струйном режиме являются распыливающими. [c.215]

    Приведенная классификация абсорбционных аппаратов является условной, так как отражает не столько конструкцию аппарата, сколько характер поверхности контакта. Один и тот же тип аппарата в зависимости от условий работы может оказаться при этом в разных группах. Например, насадочные абсорберы могут работать как в пленочном, так и в барботажном режимах. В аппаратах с барботажными тарелками возможны режимы, когда происходит значительное распыление жидкости и поверхность контакта образуется в основном каплями. [c.13]


    Влияние числа точек подачи орошения. Как указывалось, одна из причин расхождения различных данных по смоченной и активной поверхности состоит в том, что применялись различные способы подачи орошения на насадку. Этим же объясняются расхождения в опытах по массопередаче (стр. 460). Хорошо известно, что работа насадочных абсорберов в большой степени зависит от устройства оросителей и во многих случаях низкие показатели [c.449]

    Большое число имеюш,ихся типов абсорбционных аппаратов затрудняет целесообразный выбор того или иного из них для каждого конкретного случая. Во многих случаях выбор типа производится без достаточных оснований и часто определяется традицией, существуюш,ей в той или иной отрасли промышленности. Такие традиции, основанные иногда на данных 30— 40-летней давности, не всегда отвечают современному уровню абсорбционной техники. Часто абсорберы проектируются и работают в производстве не при оптимальных режимах, что ведет к неверному представлению об эффективности того или иного типа. Так, например, насадочные абсорберы в ряде производств работают с низкими скоростями газа, что снижает их эффективность. [c.651]

    В обычных случаях, особенно при абсорбции из газов невысокой концентрации, отношение Vyg lVp невелико (0,0005—0,005). При малых Уж/V r некоторые типы аппаратов мало пригодны. Так, насадочные абсорберы не могут удовлетворительно работать при низких плотностях орошения (ниже 5—6 м ч), что затрудняет их применение при значениях V /V r, меньших 0,0015—0,0025. В этом случае для повышения плотности орошения приходится прибегать к рециркуляции жидкости, что обычно невыгодно (см. стр. 215 сл.) и вызывает дополнительные расходы на ее перекачку. [c.654]

    Все рассмотренные выше модели предполагают наличие режима полного вытеснения по взаимодействующим фазам. Различие моделей между собой заключается лишь в разных способах аппроксимации движущей силы, распределение которой по высоте колонны в пределе стремится к среднелогарифмическому распределению. Так, например, согласно ступенчатой модели, математическое описание будет тем точнее, чем больше число ступеней п., т. е. чем ближе модель приближается к модели полного вытеснения. В то же время режим полного вытеснения является идеализированным для реальных аппаратов, а степень приближения к нему зависит от гидродинамического режима, в котором работает насадочный абсорбер. [c.243]

    В табл. 1У-3 приведены [6, 12] коэффициенты массопередачи К , рассчитанные по данным работы промышленных насадочных абсорберов. [c.115]

    В табл. IV-14 приведены условия работы и средние значения объемных коэффициентов массопередачи К -а для различных промышленных насадочных абсорберов, работающих при атмосферном давлении. [c.149]

Таблица 6.5. Условия работы промышленного насадочного абсорбера (Р=2,5 МПа) Таблица 6.5. <a href="/info/139845">Условия работы</a> промышленного насадочного абсорбера (Р=2,5 МПа)
    Пример расчета насадочного абсорбера, в котором происходит одновременное поглощение ИзЗ и СОз, дан в работе [106.  [c.157]

    Как правило, работа в режиме подвисания и эмульгирования целесообразна только в случае, если повышение гидравлического сопротивления аппарата не имеет существенного значения (например, если абсорбер работает при повышенных давлениях). Поэтому большинство насадочных адсорберов работает в пленочном режиме (т. е. при скоростях газа до точки А). Пределом устойчивой работы насадочных колонн является скорость газа, соответствующая точке инверсии (или захлебывания) и з, которая определяется по следующему уравнению  [c.61]

    Как устроен насадочный абсорбер и в каких режимах он может работать  [c.169]

    Из рассмотренного материала по устройству и принципу действия насадочных колонн следует, что эти аппараты, как правило, работают по принципу противоточного движения фаз. На рис. 16-15 проведено сопоставление работы противоточных и прямоточных насадочных абсорберов. [c.67]

    Сопоставьте противоточные и прямоточные схемы работы насадочных абсорберов. Почему насадочные абсорберы практически всегда работают при противоточном движении фаз  [c.98]

    Сравнение результатов расчетов показывает, что их технические характеристики различаются незначительно. Для очистки отбросных газов предпочтительнее насадочный абсорбер ввиду его более надежной работы при нагрузке ниже расчетной. [c.376]

    Большое разнообразие конструкций абсорберов предопределяется различными условиями контактирования. Среди них важное значение имеет производительность и соотношение нагрузок по жидкой У и газовой Уг фазам, которое изменяется в широких пределах от 0,0005 до 0,1. При абсорбции из газов невысокой концентрации отношение У /Уг невелико (0,0005 —0,005). Насадочные абсорберы не могут работать при низких плотностях орошения (ниже 5 — 6 м/ч), поэтому при Уж/Уг, меньших 0,0015 — 0,0025, их применение затруднено. В этих условиях успешно используются барботажные абсорберы. При абсорбции плохо растворимых или из высококонцентрированных газов отношение Уж/Уг велико (до 0,05 — 0,1). В этих условиях наиболее подходящими являются насадочные и распыливающие абсорберы, а применение барботажных становится затруднительным.  [c.11]


    Для нормальной работы насадочных абсорберов требуется равномерное распределение подаваемой жидкости по их сечению, предпочтительно — множеством мелких струек. Это достигается проще всего при помощи распределительных таре- [c.460]

    На эффективность насадочных абсорберов оказывают большое влияние диаметр и высота слоя насадки, определяемые указанным выше методом по скорости газа и требуемой поверхности массообмена. Расчет последней производится по коэффициентам массопередачи при помощи приведенных выше формул, полученных путем обобщения опытных данных для аппаратов малого диаметра (преимущественно не более 0,5 м). Практика показывает, что применительно к промышленным аппаратам рассчитанные коэффициенты массопередачи оказываются Завышенными и, следовательно, поверхности массообмена — заниженными. Это, расхождение, являющееся следствием неравномерного распределения жидкости и газа по сечению аппарата, а также их продольного перемешивания, часто довольно значительно (в 2—3 раза). Для обеспечения надежности работы проектируемых абсорберов необходимо корректировать рассчитанные размеры по имеющимся данным эксплуатации промышленных аппаратов. [c.497]

    При обычном удельном расходе каменноугольного поглотительного масла, равном 1,8— 2,0 л/м газа, для типового скруббера с деревянной хордовой насадкой диаметром 6 м плотность орошения составляет 5,5— 7,0 м (м2-ч) [1, с. 77]. В то же время известно, что насадочные абсорберы не могут удовлетворительно работать при низких значениях плотности орошения менее [c.6]

    Движение газа и жидкости в насадочных абсорберах обычно осуществляется противотоком, но созданы абсорберы и с нисходящим прямотоком Ql05-1073 копонны работают со скоростями газа до 10 м/с, что позволяет интенсифицировать процесс при уменьшенных габаритах аппарата и бопее низком, чем при противотоке, гидравлическом сопротивпении. [c.55]

    При работе на концентрированных (100%-ных) газах высота зоны поглощения составила 1 м для ЫНз и 1,5 м для СО2. Удельная производительность по карбонату аммония 93 кг/м , что почти в 10 раз больше, чем в насадочном абсорбере. Возможна работа и на разбавленных газах, например на отходящих. При этом соответственно возрастает высота зоны абсорбции например, если содержание СО2 снижается до 20—30%, то высота зоны увеличивается в 3—4 раза. [c.161]

    Насадочные абсорберы могут работать в различных гидродинамических режимах, характеризуемы. гидравлическим сопротнвленнсм орошаемой насадки (рнс. 6.6). [c.143]

    Натриевые соли фенолов подвергаются в условиях работы скруббера заметному гидролизу. Для улучшения обесфеноливания пара в нижней секции скруббера необходим противоток, кроме того, в верхней части аппарата следует поддерживать значительный избыток шелочи. В то же время при использовании насадочной нижней секции обегфеноливающего скруббера выполнение этих условий оказывается невозможным из-за несоответствия количества щелочи, которую по условиям материального баланса следует подавать на орошение, и условий эффективной работы насадочного абсорбера. Аппараты такого типа хорошо работают при плотности орошения не менее 1,2 мУм сечения аппарата в 1ч. Легко подсчитать, что удовлетворение этого требования возможно только при подаче орошения в количестве, в десятки раз превышающем необходимое по условиям равновесия. Чтобы выйти из этой ситуации, на большинстве предприятий создают несколько контуров циркуляции фенолятов в нижней части аппарата (с нарастанием избытка свободной шелочи по высо-те>. Свежую щелочь на верхний ярус насадки подают периодически (через 15 мин по 30-60 с). В этих условиях содержание фенолов в воде уменьшается до 0,25—0,30 r/дм то есть полнота очистки около 70-80%. [c.378]

    Барботажный абсорбер с насадкой. Этот аппарат, разработанный Кафаровым и Бляхманом [11], известен под названием эмуль-гационной колонны. Последняя работает как насадочный абсорбер, но в барботажном режиме (стр. 401). При этом неустойчивость, присущая данному режиму, устраняется искусственным затоплением насадки при помощи утки (см. выше). [c.499]

    Отношение AP/jVor для одного и того же аппарата может изменяться в довольно широких пределах, так как зависит от соотношения между сопротивлениями газовой и жидкой фаз. Для хорошо растворимых газов отношение АР/Л/ог в насадочных, пленочных (трубчатых и с листовой насадкой) и распыливающих (форсуночных) аппаратах составляет примерно 20—50 н/м , а для барботажных — от 100 до 400 н/м . Поэтому сопротивление барботажных аппаратов обычно значительно превышает сопротивление насадочных и последние, если требуется низкое сопротивление, вообще говоря предпочтительнее. Однако, когда из-за низкого отношения V IVt или необходимости отвода тепла насадочные абсорберы долж ы работать с рециркуляцией жидкости, надо учитывать расход энергии не только на перемещение газа, но и на перекачку жидкости в этом случае по общему расходу энергии барботажные и насадочные абсорберы примерно равноценны. [c.656]

    Скорость захлебывания снижается с увеличением отношения расхода жидкости к расходу газа, насьшной плотности насадки и с уменьшением размера насадочных элементов, а также зависит от типа насадки. Насадочные абсорберы должны работать с максимально возможными скоростями газового потока, при которых насадка не захлебывается. Обычно эта скорость превышает половину скорости захлебывния. Для колец Рашига ее можно принимать до 60...80%, для седлообразных насадок-до 60...85%, для насадок Теллера - до 75...90% от скорости захлебывания. Параметры начала захлебьшания определяют по эмпирическим соотношениям. [c.333]

    Более сложным по поддержанию устойчивого режима работы является насадочный эмульгационный абсорбер (рис. 11.13). Это насадочный абсорбер, работающий в режиме эмульгирования, т.е. в начале его захлебьшания — с поддержанием в нем постоянного объема жвдкости с помощью гвдравлического затвора. По механизму взаимодействия фаз такой абсорбер относится к числу барботажных, хотя по конструктивным признакам является типичным насадочным. [c.920]

    Рабочие режимы абсорберов с трехфазным псевдоожиженным слоем (см. рис. Х-10) характеризуются зависимостью перепада давлений Ар от скорости газа w . На кривых Ар = f (w ), качественно аналогичных для любой плотности орошения, доли живого сечения опориораспределительной решетки, физических свойств жидкости, газа и шаровой насадки, отмечаются два перегиба, ограничивающие три рабочих режима. В первом из них (участок ОВ на рис. Х-23) абсорбер работает как насадочная колонна при малых нагрузках по газу и жидкости. Для этого режима характерна большая неравномерность распределения жидкости и газа по сечению слоя газ проходит главным образом по центральной части [c.493]

    Обычно насадочные абсорберы предпочтительнее для небольших уста повок, при работе в условиях коррозии, при наличии жидкостей, склонных к вспениванию, при высоких соотношениях жидкость газ, а также в тех случаях, когда желательно небольшое гидравлическое сопротивление системы. В промышленных условиях чаш е всего применяют насадки следу-юш,их типов кольца Рашига (керамические, графитовые или стальные), керамическую седловидную и деревянную хордовую (если требуется особенно малое сопротивление). [c.9]

    На основе анализа кинетических закономерностей процесса предложен [248] способ очистки газов от диоксида углерода щелочными хемосорбентами, по которому извлечение СОг осуществляют в аппаратах с частично затопленной насадкой (абсорберы с регулируемым запасом жидкости). Верхняя часть насадочного аппарата работает в пленочном режиме или режиме подвисания. Нижняя часть аппарата, где процесс хемосорбции в значительной степени обратим и протекает в переходной области и области, близкой к кинетической, затапливается. Сопротивление зоны затопления измеряют специально установленным дифманометром ДМПК-ЮО. Вторичный прибор пневматически связан с клапаном на линии насыщенного раствора. Величину сопротивления, соответствующую заданной высоте затопления, устанавливают на вторичном приборе. Разработаны методики расчета гидравлических показателей аппаратов с затопленной насадкой [235, 236, 265]. В качестве варианта возможно использование рециркуляции жидкости [239]. [c.208]

    Промышленный насадочный абсорбер с регулируемым запасом жидкости был испытан при более высоких нагрузках по газу (до 0,27 м/с при Р = 2,5 МПа) и по жидкости (до 106 м/ч) на Черкасском ПО Азот . Степень карбонизации насыщенного раствора МЭА с концентрацией 2,5 кмоль/м была повышена с 0,6—0,65 до 0,68—0,74 моль/моль при затоплении нижнего слоя насадки на 2—3 м. Отметим, что увеличение запаса жидкости лишь в нижней части абсорбера и секционирование по высоте аппарата позволили, как подробно описано в работах [210, 233, 234], получить заметно лучшие показатели по сравнению с показателями при использовании абсорбера с высокослойными ситчатыми тарелками. Работа последнего характеризуется нестабильностью и неравномерностью барботажа, свойственной аппаратам без продольно-поперечного секционирования, интенсивным продольным перемешиванием жидкости, значительным брызгоуносом. [c.209]

    Способ работы насадочных абсорберов в режиме частичного затопления успешно испытан и в процессе очистки от СО2 раствором горячего поташа [266]. По данным промышленных испытаний, проведенных Ю. В. Аксельродом и Л. А. Юдиной на Новгородском ПО Азот , расход полубедного раствора горячего поташа был снижен на каждый из двух параллельно работающих абсорберов более чем на 80 т/ч, т. е. примерно на 10%. При этом остаточное содержание СО2 в газе не изменилось и составляло 0,05—0,055% (об.), что свидетельствует о достаточно высокой эффективности массообмена в зоне затопления насадки, максимальная высота которой не превышала 3,5 м. Сопротивление аппаратов повысилось при этом до 80—83 кПа. Производительность но газу каждого из аппаратов с седловидной насадкой размером 37 мм составила 102 500 м /ч при давлении около 2,7 МПа. [c.209]

    Насадочные абсорберы могут работать в различных гидродинамических режимах. При малых скоростях теченояя газа и малых плотностях орошения жидкости абсорберы работают в п л е-ночном режиме. При возрастании скррости движения газа и жндкости сила трения между ними увеличивается, образуются брызги, пузыри, пена и одновременно увеличивается поверхность коптак- [c.165]


Смотреть страницы где упоминается термин Насадочные абсорберы работа: [c.417]    [c.144]    [c.209]   
Абсорбция газов (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбер

Насадочные абсорберы



© 2025 chem21.info Реклама на сайте