Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидравлическое сопротивление барботажных аппаратов

    Распространенными в химической, нефтеперерабатывающей и других отраслях промышленности аппаратами являются барботажные (тарельчатые) колонны. При расчетах гидравлического сопротивления барботажных аппаратов обычно требуется определить гидравлическое сопротивление сухих (т. е. неорошаемых) тарелок Ар , через которые проходит газ или пар. Для расчета Ар применяют следующую формулу  [c.12]

    Гидравлическое сопротивление барботажных аппаратов. Гидравлическое сопротивление Ар барботажных тарелок складывается из 1) сопротивления Ар1 сухой тарелки, 2) сопротивления Лрг столба жидкости на тарелке, соответствующего глубине барботажа, и 3) сопротивления Арз, обусловленного силами поверхностного натяжения жидкости. [c.457]


    Барботажные абсорберы отличаются высокой интенсивностью процессов массообмена. Из всех конструкций абсорберов их отличает наименьший удельный расход жидкости до 1,5 кг/(м -с) гидравлическое сопротивление, напротив, велико (около 300 Па на единицу переноса массы). Для лучшего распределения газа в массе жидкости аппараты делают секционными. Скорость газа в этих аппаратах составляет 2 м/с. Из-за низких скоростей газового потока и высоких гидравлических сопротивлений барботажные абсорберы применяют только для очистки газовых потоков с небольшим расходом (до 10 ООО м /ч). [c.145]

    Гидравлическое сопротивление барботажных устройств в любых аппаратах определяет основные технические характеристики -их работы. Для аппаратов с погружными горелками (барботерами) чрезвычайно важно установить зависимость гидравлических сопротивлений от конструкции барботеров и режимных условий. [c.122]

    Гидродинамические основы работы аппаратов в пенном режиме рассмотрены в монографиях [3, 8, 9]. Примеры расчета гидравлического сопротивления, рабочих скоростей и других гидродинамических параметров для барботажных аппаратов даны в главах VI и УП настоящего пособия. [c.17]

    Как известно, поверхность контакта фаз на барботажных тарелках массообменных аппаратов образуется за счет уменьшения кинетической энергии газового потока, проходящего через слой жидкости, т. е. обусловливается гидравлическим сопротивлением мокрой тарелки. [c.104]

    Влияние стабилизатора на гидродинамический режим пенного аппарата и структуру пенного слоя можно проследить прежде всего по характеристической кривой гидравлического сопротивления решетки с пеной. На рис. VI.3 показана зависимость гидравлического сопротивления противоточной решетки со слоем пены от скорости газа в полном сечении аппарата при наличии стабилизатора и без него. На этой зависимости различают несколько характерных гидродинамических режимов (см. гл. I) — барботажный, пенный, волновой и переходный. В присутствии стабилизатора барботажный режим возникает при скоростях газа, несколько больших,-чем без стабилизатора, волновой режим не появляется, участок устойчивого пенного [c.237]

    Основные недостатки барботажных абсорберов — сложность конструкции и высокое гидравлическое сопротивление, связанное При пропускании больших количеств газа с значительными затратами энергии на перемещение газа через аппарат. Поэтому барботажные абсорберы применяют преимущественно в тех случаях, когда абсорбция ведется под повышенным давлением, так как при этом высокое гидравлическое сопротивление не существенно. [c.602]


    Такой принцип организации контакта фаз и сепарации газожидкостного потока позволяет обеспечивать пропускную способность аппарата, на порядок превышающую производительность барботажных колонн при высокой степени разделения. Однако гидравлическое сопротивление в таких колоннах несколько больше, чем в барботажных. [c.163]

    Барботажные колонны. Эти аппараты в процессах ректификации наиболее широко распространены. Они применимы для больших производительностей, широкого диапазона изменений нагрузок по пару и жидкости и могут обеспечить весьма четкое разделение смесей. Указанный выше (см. главу XI) недостаток барботажных аппаратов — относительно высокое гидравлическое сопротивление — в нмеет такого существенного значения, как в процессах абсорбции, где величина Ар связана со значительными затратами энергии на перемещение газа через аппарат. При ректификации повышение гидравлического сопротивления приводит лишь к некоторому увеличению давления и соответственно к повышению температуры кипения жидкости в кипятильнике колонны- Однако тот же недостаток (значительное гидравлическое сопротивление) сохраняет свое значение для процессов ректификации под вакуумом. [c.497]

    При необходимом числе единиц переноса более 8—10 целесообразно применение аппаратов, в которых достигаются малые значения ког (например, барботажных абсорберов с затопленной насадкой) или, если недопустимо большое гидравлическое сопротивление, аппаратов с малым сопротивлением (например, абсорберов с листовой насадкой). Трубчатые пленочные аппараты имеют ограниченную длину труб (до 6 ж) и число единиц переноса в аппарате обычно не превышает 4—6. [c.653]

    При необходимом числе единиц переноса свыше шести-семи в аппаратах со ступенчатым контактом требуется обычно более трех ступеней и в данном случае эти аппараты целесообразно выполнять в виде тарельчатых колонн. В качестве таких аппаратов возможно использование барботажных абсорберов с тарелками различных типов. Эти абсорберы в принципе применимы при любом числе единиц переноса, но при очень больших числах единиц переноса требуется много тарелок, что ведет к увеличению высоты аппарата, ело удорожанию и повышению гидравлического сопротивления. При числе единиц переноса на эквивалентную ступень (см. стр. 227), равном 0,8, в аппарате с 20 тарелками можно получить общее число единиц переноса 16 высота рабочей части такого аппарата составит 8—10 м. По габаритам описанный барботажный абсорбер обычно меньше насадочного, но обладает большим гидравлическим сопротивлением. При необходимом числе единиц переноса более шести-семи и работе без давления насадочные аппараты могут оказаться предпочтительнее. [c.653]

    Пределы изменения нагрузок по жидкости и газу. В производственных условиях часто по тем или иным причинам требуется изменение нагрузки по жидкости и газу. Это ведет к изменению режима работы абсорбера, его эффективности и гидравлического сопротивления. Абсорберы некоторых типов (например, насадочные и барботажные с колпачковыми тарелками) могут, однако, удовлетворительно работать в довольно широких пределах изменения нагрузок другие аппараты (например, абсорберы с ситчатыми и провальными тарелками) чувствительнее к изменению нагрузок и могут нормально работать в более узком диапазоне. [c.657]

    Гидродинамика в барботажных аппаратах с мешалкой в циркуляционном контуре. В аппарате с винтовой мешалкой создаваемый ею напор в основном затрачивается на преодоление гидравлического сопротивления циркуляционного контура. В практике расчетов таких аппаратов принято [28] рабочие характеристики мещалки и циркуляционного контура (сети) строить в обобщенных координатах (рис. 6.7.3.6) ко- [c.526]

    Барботажные аппараты имеют более высокое гидравлическое сопротивление по сравнению с насадочными. Например, скруббер с тарелками провального типа, предназначенный для улавливания бензольных углеводородов, имел сопротивление около 400 мм вод. ст. при скорости газа 1,7 м/с [4]. Гидравлическое сопротивление полых форсуночных аппаратов невелико и при скорости газа 0,9—1,2 м/с составляет 55—100 мм вод. ст. [5, 6]. Аппараты с псевдоожиженным слоем насадки характеризуются значительным сопротивлением (50— 70 мм вод. ст. на одну тарелку при скорости воздушного потока 3— 5 м/с) [7,8]. [c.9]

    При конструировании аппаратов этого типа (рис. 89) следует принимать следующие размеры шаг между кольцевыми ребрами 10—15 см величина перекрытия колец 3— 5 мм (она остается постоянной для всех элементарных узлов) число оборотов ротора свыше 3 ООО в минуту гидравлическое сопротивление одного элементарного узла 1—1,5 мм вод. ст. Диаметр ротационного аппарата этого типа 840 мм, а высота рабочей части 2560 мм при 96 элементарных контактных узлах. Колпачковая колонна с таким же количеством тарелок имела бы высоту около 20 ООО мм. Однако при сопоставлении этого типа ротационных аппаратов с тарельчатыми барботажными следует учитывать производительность аппарата, г 1 Максимальная площадь для прохода пара в ротационном аппарате невелика. Она определяется диаметром наименьшего подвижного кольца и его расстояния до ближайшего неподвижного кольца. Отношение площади этого прохода к площади полного сечения колонны будет живым сечением контактного устройства. Оно составляет 5—7%, тогда как у барботажных тарельчатых аппаратов — 15— 20%. Так как скорость пара в горловинах барботажных аппаратов примерно та же, что и в живом сечении роторного аппарата, то ясно, что производительность контактного аппарата будет невелика. [c.142]


    Применив методику и результаты перечисленных работ к решетчатым устройствам аппаратов с погружными горелками, определили величины, характеризующие гидравлическое сопротивление, структуру и газосодержание барботажного слоя. [c.96]

    Основными достоинствами насадочных колонн являются простота устройства и низкое гидравлическое сопротивление. Недостатки трудность отвода тепла и плохая смачиваемость насадки при низких плотностях орошения. Отвод тепла из этих аппаратов и улучшение смачиваемости достигаются путем рециркуляции абсорбента, что усложняет и удорожает абсорбционную установку. Для проведения одного и того же процесса требуются насадочные колонны обычно большего объема, чем барботажные. [c.448]

    Достоинства барботажных аппаратов заключаются в возможности получения хорошего межфазового контакта при любых, даже очень малых количествах подаваемой жидкости, удобном отводе тепла, выделяющегося в процессе поглощения газов, причем змеевики могут располагаться прямо в слое жидкости на тарелках. Эги аппараты более подходят для работы на суспензиях габаритные размеры и вес их меньше, чем насадочных аппаратов одинаковой производительности. Конструктивно барботажные аппараты более сложны, чем насадочные, и при большом числе тарелок гидравлическое сопротивление, оказываемое потоку газов, может быть значительным. Изготовление их из коррозионностойких неметаллических материалов затруднительно. [c.537]

    Барботажные тарельчатые аппараты обладают более высоким гидравлическим сопротивлением потоку газа, чем насадочные, но позволяют легче достичь равномерного распределения жидкости по сечению абсорбера при больших диаметрах аппаратов. [c.195]

    Подача газа в раствор может осуществляться различными способами барботажным, в скруббере, эжектором и др. При барботажном способе растворение газа идет наиболее эффективно за счет развитой поверхности соприкосновения газа и воды, но он требует больших затрат на компримирование газа. Применение скрубберов с насадкой позволяет снизить эти затраты вследствие небольшого гидравлического сопротивления скруббера. Однако сами скрубберы очень громоздки, требуют большой затраты металла и площадей для размещения. Более рациональной является схема с использованием эжектора (рис. 5.2). В этом случае отпадает необходимость сжатия газа специальными вентиляторами, что существенно снижает энергетические потери. Для снижения давления газа и улучшения перемешивания газа и воды целесообразно применять аппараты, разработанные в МЭИ [29]. Одним из [c.158]

    Расход жидкости в барботажных пылеуловителях составляет 0,2-0,3 м на 1000 м газа. Гидравлическое сопротивление однотарелочных аппаратов 500-1000 Па. [c.255]

    Мокрые пылеуловители (полые, насадочные или барботажные скрубберы, пенные аппараты, трубы Вентури и др.). Они более эффективны, чем сухие Mexai-нические аппараты. Полый скруббер при гидравлическом сопротивлении 20— 25 мм вод. ст. улавливает частицы пыли диаметром более 10 мкм, а с помощью трубок Вентури при сопротивлении 1000 мм вод. ст. можно уловить частицы пыли диаметром менее 1 мкм. [c.357]

    Процесс димеризации ацетилена можно проводить в различных реакторах, но все они должны обеспечивать хорошее перемешивание ацетилена и катализатора, а также иметь минимальное гидравлическое сопротивление катализатора для обеспечения безопасных условий работы. В производственных условиях лучше всего зарекомендовали себя аппараты барботажного типа. Они просты по конструкции. Для увеличения поверхности контакта ацетилена с катализатором в нижней части реактора устанавливают газорас-пределители с тангенциальным вводом газа. [c.227]

    Барабанный абсорбер. Некоторое применение имеют барабанные абсорберы, представляющие собой горизонтальные цилиндрические аппараты. Жидкость движется через такой цилиндр. Газ поступает с большой скоростью (до 35—55 м1сек) через опущенную в жидкость барботажную трубу. При этом жидкость оттесняется газом от трубы и на поверхности жидкости образуется воронка, с поверхности которой газом срываются капли. Поверхность контакта, образуемая в основном каплями и брызгами, заполняющими значительную часть газового объема аппарата, велика. Недостаток абсорбера—высокое гидравлическое сопротивление. [c.498]

    Барботажные колонны работают интенсивнее башен с насадками, но создают значительное гидравлическое сопротивление потоку газа, поэтому применяются реже башен с насадками. Для абсорбции и нагревания применяются колонны и одноступенчатые барботеры. Последние представляют собой емкости, содержащие жидкость, в которую погружены колокола или трубы. Газ или пар поступает внутрь колоколов или труб и пробулькивает через слой жидкости. Площадь соприкосновения в аппаратах первого, второго и третьего типов сохраняется лишь при сравнительно спокойном прохождении газа. В. В. Кафаров, П. А. Семенов и другие ученые доказали, что при иоступлении газа с больщой скоростью поверхность пленок становится не гладкой, а волнообразной, сферическая форма капель и пузырьков газа также нарушается происходит взаимное проникновение фаз через граничные плепкн. Протекает интенсивная турбулентная массопередача, при которой трудно учесть площадь соприкосновения. [c.75]

    Теплообмен ник дистилляции. Основным назначением ТДС яЬляется разложение содержащихся в фильтровой жидкости угле-аммонийных солей и бикарбоната натрия и отгонка из нее С0% путем дальнейшего нагревания. Таким образом, ТДС - это аппарат, в котором протекают одновременно два процесса теплопередача и десор щя СОг из жидкости в газовую фазу. В процессе отгонки существует непосредственный контакт между паром и жидкостью, и процесс протекает тем интенсивнее, чем больше поверхность контакта фаз. Жидкость, проходящая через ТДС, не содержит твердых примесей, позтому ТДС могут быть как барботажного, так и насадочного (скрубберного) типа. Теплообменники барботажного типа эффективнее насадочных, но обладают более высоким гидравлическим сопротивлением. [c.208]

    Барботажные устройства (рис. 10.3,в) используются в процессах массопереноса наиболее часто. Такое устройство представляет собой секцию, заполненную до определенной высоты жидкой фазой в нижней части секции размещено газо-(паро-)распределительное устройство ( тарелка ) — колпачковое, ситчатое, клапанное или другое (на рисунке эти конструкции показаны схематически). Газовая фаза диспергируется в этом устройстве (это приводит к увеличению поверхности межфазного контакта) и барботирует через слой жидкости. Число колпачков и клапанов на тарелке достигает десятков (в крупных аппаратах — сотен). Ситчатые устройства обычно отличаются меньшим гидравлическим сопротивлением газовому потоку они, однако, весьма чувствительны к загрязнениям. Над жидкостью расположена сепарационная зона, снижающая унос капель газовым (паровым) потоком, т.е. перемещение жидкости в направлении, противоположном движению ее основного потока (обратное перемешивание в терминах структуры потоков). Жидкость организованно, через сливные трубки или карманы, транспортируется на расположенную ниже секцию (непровальные тарелки) либо — в отсутствие сливных устройств — уходит с тарелки за счет провала через отверстия по законам истечения (ситчатые провальные тарелки). Скорость газа в барботажных устройствах ограничена возникновением заметного уноса капель газовым (паровым) потоком. [c.747]

    Третий режим — режим эмульгировашм (линия ВС). В этом режиме газо-жидкостная система по внешнему виду напоминает барботажный слой (пену) или газо-жидкостную эмульсию. Режим эмульгирования соответствует максимальной интенсивности аппарата вследствие увеличения поверхности контакта фаз, которая определяется в основном поверхностью газовых пузырей и интенсивной т фбулизащ1ей потоков. Однако этот режим сопровождается резким увеличением гидравлического сопротивления аппарата. Кроме того, режим эмульгирования трудно поддерживать без спе-Щ1альных устройств, поскольку узок интервал изменения скоростей газа, при котором насадочный аппарат работает в этом режиме. Режим эмульгирования заканчивается в точке С, называемой точкой захлебывания . [c.570]

    Для аппаратов со свободной поверхностью жидкости, т. е. главным образом для барботажных систем, гидравлическое сопротивление (АР) рассчитывается как сумма сопротявлений контактного устройства (АРсух), слоя жидкости на контактном устройстве (ДРст) и сопротивления, обусловленного силами поверхностного натяжения (АРа) - [c.162]

    Иногда мокрые пылеуловители подразделяют по затратам энергии на низконапорные, средненапорные и высоконапорные. К низконапорным аппаратам относятся пылеуловители, гидравлическое сопротивление которых не превышает 1500 Па. В эту группу входят форсуночные скрубберы, барботажные аппараты, мокрые центробежные аппараты и другие. К средненапорным мокрым пьшеуловителям с гидравлическим сопротивлением от 1500 до 3000 Па относятся некоторые динамические скрубберы, газопромыватели ударноинерционного действия, эжекюрные скрубберы. Группа высоконапорных газопромывателей с гидравлическим сопротивлением более 3000 Па включает в основном скрубберы Вентури и аппараты с подвижной насадкой. [c.131]

    Конструкция БКГР выполнена в. виде трубчатого теплообменника с увеличенной верхней сепарирующей частью 1. Основное отличие заключается в том, что концы пучка труб выведены под ниЖнюю трубную решетку на длину, равную 4,5—5) с , где й — внутренний диаметр труб. Трубы являются или барбо-тажиыми 2 или циркуляционными, 3, причем в аппаратах с малым количеством труб может быть одна центральная циркуляционная труба. В стенках выступающих концов барботажных труб на расстояний 4d от нижнего среза имеются отверстия, расположенные строго на одном уровне. Количество и диаметр отверстий определяются скоростью и расходом проходящего через них газа. При подаче газа в аппарат, заполненный реакционной массой, под нижней решеткой образуется газовый слой, из которого газ через отверстия 4 равномерно поступает в бар-чботажные трубы. Расчетная высота газового слоя зависит от гидравлического сопротивления в барботажных трубах. Для устранения возмущений поверхностного слоя жидкости газ направляется под решетку отбойным листом 5. В межтруб-ное пространство в зависимости от характера реакции может подаваться тепло- или хл а доноситель. [c.211]

    Многочисленные опыты, производственные испытания и промышленная эксплуатация пенных абсорберов показали их большие преимущества. Наряду с тем, что в этих аппаратах достигаются исключительно высокие- коэффициенты массопере- Шидтсть дачи, в сотни раз превышающие таковые 1)1 для насадочных абсорберов, оказывается, что гидравлические сопротивления их невелики. Это понятно, так как барботаж на решетках отсутствует, а сопротивление слоя пены гораздо меньше, чем сопротивление эквивалентного по эффективности слоя жидкости в барботажных аппаратах. [c.391]


Смотреть страницы где упоминается термин Гидравлическое сопротивление барботажных аппаратов: [c.617]    [c.617]    [c.617]    [c.11]    [c.262]    [c.643]    [c.522]    [c.209]    [c.122]    [c.37]   
Процессы и аппараты химической технологии (1955) -- [ c.457 , c.458 ]




ПОИСК





Смотрите так же термины и статьи:

Барботажный сопротивление

Гидравлическое сопротивление



© 2024 chem21.info Реклама на сайте