Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Импульс колебательный

    Дополнительные потери удельного импульса к-н-, обусловленные только колебательной не-равновесностью, определяются как разность удельного импульса колебательно, равновесного и неравновесного течений (при одинаковых значениях г), отнесенная к удельному импульсу колебательно равновесного течения. [c.48]

    Общее число степеней свободы, которыми обладает л-атом-ная молекула, равно 2>п, из которых три степени свободы (или две в случае линейной молекулы) характеризуют вращение молекулы и три степени свободы определяют поступательное движение молекулы в целом. Таким образом, общее число колебательных степеней свободы для системы, состоящей из п атомов, будет равно 2>п — 6 (для линейной системы — 2п — 5). Для активного комплекса это число на единицу меньше, так как одна из колебательных степеней свободы превращается в координату реакции. Колебание образовавшегося комплекса X — V — 2 вдоль валентных связей ведет к реакции распада. Это колебание заменяется движением комплекса X—V—2 особого рода, ведущим к образованию молекул 2 и X. Оно было описано выше и изображено на рис. V, 1 как путь реакции. Это движение рассматривается как вид поступательного движения активного комплекса. Понятия вращение и колебание в применении к активному комплексу не имеют обычного смысла, так как комплекс существует очень недолго. Эти понятия обозначают, что зависимость потенциальной и кинетической энергии системы атомов от координат и сопряженных с ними импульсов такая же, как и для устойчивых молекул. [c.143]


    Параметры функции распределения оценивались с помощью модифицированного метода моментов. Исследовалась зависимость этих параметров от начальных кинетических энергий Т%, 7 и от полного момента импульса системы. Показано, что f (т) зависит от начальной кинетической энергии колебательных степеней свободы и координаты реакции (рис. 4.29). Полный момент импульса системы не оказывает существенного влияния на параметры функции распределения по максимальным временам жизни и, следовательно, на константу скорости спонтанного распада (рис. 4.30), что очевидно, связано с малостью момента импульса молекулы для задаваемых значений начальной вращательной энергии. [c.117]

    Исследовался также вопрос о влиянии начальной кинетической энергии и полного момента импульса системы на распределение энергии между продуктами реакции. Кинетическая энергия Т относительного движения невзаимодействующих молекул N2 и атома О и внутренняя е (колебательная и вращательная) энергия молекулы N2 составляют полную энергию системы. Начальные условия для расчета траекторий выбираются случайным образом, поэтому величины Г и е оказываются тоже случайными. Достаточно исследовать детально функцию распределения одной из этих величин, так как они связаны законом сохранения знергии. Рассмотрим функцию распределения Ф (е) энергии е. Эта энергия распределена на отрезке от О до Ек, где зависит от полной энергии системы N2 О. Анализ [c.117]

    В работе [287] исследовано влияние ангармоничности на процессы передачи энергии в мономолекулярных реакциях на примере трехатомной молекулы СО2- Энергия связей в этой молекуле аппроксимировалась гармоническим потенциалом и потенциалом Морзе. Начальные условия задавались так, что молекула обладала ненулевым полным моментом импульса. Взаимодействие между вращательным и колебательным движением оказалось больше в случае ангармонического потенциала. [c.123]

    Динамические расчеты проводили для различных соотношений энергетических заселенностей симметричной (Es ) и антисимметричной ( ) колебательных мод трехатомных молекул. При задании начальных условий предполагалось, что интегрирование траекторий движения атомов проводится в системе центра масс, начальные расстояния между атомами выбирались равными равновесным, а начальные импульсы атомов рассчи- [c.128]

    В пульсационных экстракторах интенсификацию массообмена между контактирующими фазами обеспечивают сообщением им колебательного движения определенных амплитуды и частоты. Независимо от типа насадки экстракционную колонну в этом случае снабжают генератором пульсаций (пневматическим, механическим и др.) Так, в установке с пневматической системой пульсаций (рис. 2.46) воздух или инертный газ от компрессора 2 через ресивер 5 и золотниково-распределительный механизм 3 пневматического пульсатора поступает в пульсационную камеру 1 экстрактора 4. При прямом импульсе уровень жидкости в пуль-сационной камере снижается, вследствие чего жидкость в колонне поднимается при обратном импульсе—камера соединяется G атмосферой и жидкость в колонне опускается. В аппаратах [c.118]


    Известно, что в общем случае взаимодействие электронного пучка с молекулами может сопровождаться изменением не только направлений (упругое рассеяние), но и энергии налетающих электронов с одновременным возбуждением дискретных или непрерывных энергетических уровней молекулы (неупругое рассеяние). Полученные при этом данные позволяют определить энергии отдельных электронных или колебательных состояний и получить информацию о полных сечениях упругого и неупругого рассеяния, свойствах возбужденных электронных состояний, распределения моментов импульсов электронов в рассеивающем объеме и т. п. [c.156]

    В замедлителях, охлажденных до низких температур, получают длинноволновые холодные нейтроны с малыми величинами импульса р. Это позволяет использовать холодные нейтроны для исследования колебательных (фононных) и магнонных спектров кри.-сталлов с помощью неупругого рассеяния. [c.73]

    Таким образом, г-атомная молекула характеризуется Зг-коор-динатами и З/"-импульсами. В качестве координат q нецелесообразно выбирать координаты атомов. Эти координаты выбираются таким образом, чтобы в них была возможность описывать поступательное, вращательное и колебательное движение молекул. Поступательное движение описывается изменением координат центра тяжести молекул, вращательное — углами между осями молекул и осями координат, колебательное — изменением расстояний между атомами. [c.202]

    Эволюция коснулась в основном аппарата временного кодирования. Передача сигналов с помощью колебательного и модулируемого процесса имела очевидные преимущества, так как допускала огромное разнообразие кодированных сигналов, почти полностью термодинамически вырожденных, т. е. не подчиняющихся термодинамическим ограничениям. Ни одна последовательность химических реакций не имеет более универсального характера, чем последовательность электрических импульсов нервной сети, и не способна передать такой же объем информации. [c.338]

    Мы рассмотрели распределение молекул по координатам и импульсам. Однако молекулы двигаются не только поступательно, они вращаются и, кроме того, входящие в них атомы участвуют в колебательном движении друг относительно друга. Важно установить, как распределяется средняя энергия молекул по этим разным типам движения. Каждый тип движения описывается через соответствующие координаты и импульсы. Как правило, точно, а в некоторых случаях приблизительно энергия выражается квадратично через эти координаты и импульсы. Действительно, энергия поступательного движения определяется составляющими импульсами движения молекулы  [c.152]

    Согласно квантовой механике, энергия и импульс, связанные с каждым нормальным колебанием (каждой волной), квантуются, т. е. могут принимать только дискретные значения они оказываются кратными (п = О, 1, 2---) величинам (28), имеющим смысл соответственно энергии и импульса элементарного возбуждения колебательного движения в кристалле (см. 3, 4). Согласно сказанному ранее, каждое такое элементарное возбужде- [c.74]

    Проводилось также исследование электронного спектра простого свободного радикала оксида алюминия. Большой интерес в этом случае вызывает явление связанное, по-видимому, с анизотропным явлением распространения света от лазерной мишени. Наблюдаемы эффект заключался в том, что для секвенции Лу = -1 значение определяемой из спектра колебательной температуры падало с повышением мощности лазерного излучения, что противоречит на первый взгляд здравому смыслу, но может быть объяснено, если считать, что закон сохранения импульса для всех фотонов лазерного излучения соблюдается и переизлучение от лазерной мишени имеет преимущественную ориентированность в направлении первоначального движения фотонов и зависит от мощности лазерного излучения. [c.101]

    Колебательные реакции представляют большой интерес не только для химиков и физикохимиков в связи с их необычными кинетическими характеристиками, но и для биологов, так как они служат моделями генерации биоритмов, нервных импульсов, мышечного сокращения и т. д. Изучение колебательных химических процессов важно и для технологов, так как эти процессы могут существенно влиять на режим работы промышленных проточных реакторов. [c.6]

    ВОДИТСЯ в круговое колебательное движение, стенки корпуса сообщают мелющим телам частые импульсы, вследствие чего материал и шары в мельнице совершают сложное движение. При малой частоте колебаний вибромельницы каждое из измельчающих тел совершает в ней лишь ограниченные перемещения около некоторого среднего положения. По мере увеличения частоты колебаний достигается критическая зона, в которой характер движения изменяется измельчающие тела подбрасываются, сталкиваются и совершают отраженные броски, вращаются, и, кроме того, вся загрузка перемещается вокруг центральной трубы корпуса. [c.794]

    Выполненными исследованиями была окончательно доказана природа броуновского движения. Молекулы среды (жидкости или газа) сталкиваются с частицей дисперсной фазы, в результате чего она получает огромное число ударов со всех сторон. Если частица имеет сравнительно больите размеры, то число этих ударов так велико, что ио соответствующему закону статистики результирующий импульс оказывается равным нулю, и такая частица не будет двигаться под действием теплового движения молекул. Кроме того, частицы с большой массой обладают инерционностью и мало чувствительны к ударам молекул. Очень малые частицы (в ультрамикрогетерогенных системах) имеют значительно меньшие массу и поверхность. На такую частицу будет приходиться существенно меньшее число ударов, и поэтому вероятность неравномерного распределения ими)льсов, получаемых с разных сторон, увеличивается. Это происходит как вследствие неодинакового числа ударов с разных сторон частицы, так и вследствие различной энергии молекул, сталкивающихся с частицей. В результате в зависимости от размеров часпща приобретает колебательное, вращательное и иостуиательное. движение. [c.202]


    Устранение влияния сорта нефти на результаты измерений достигают дифференциальным включением двух емкостных преобразователей - рабочего, заполненного исследуемой нефтью, и эталонного, заполненного сухой обезвоженной нефтью (влагомер ВН-2М НИПИнефтехимавтомат, Филипс петролиум и др.). В этих влагомерах рабочий и эталонный емкостные преобразователи поочередно подключаются к колебательному контуру генератора. Параллельно колебательному контуру подключен конденсатор переменной емкости, ротор которого соединён с двигателем. При изменении влажности нефти изменяется емкость рабочего преобразователя и вырабатывается сигнал в виде импульсов, ширина которых пропорциональна содержанию воды. Недостатком таких влагомеров является старение нефти в эталонном преобразователе и изменение физических свойств ее, в том числе ДП. Этот недостаток во влагомере фирмы Инвалко устранен путем непрерывной подачи обезвоженной нефти в эталонный преобразователь. Обезвоживание нефти достигается с помощью фильтра, через который пропускается часть потока. [c.60]

    С указанной точки зрения значительный интерес представляет новый тип аппаратуры, названной пульсационной или импульсной. В этой аппаратуре процессы протекают без каких-либо движущихся частей и посторонних агентов, направляемых внутрь аппарата, реактора, что является преградой от внешних загрязнений. В такой аппаратуре масса в любой фазе — газ, жидкость, порошок, гранулы — перемешивается колебательными низкочастотными импульсами. Пульсатор расположен вне аппарата на удобном расстоянии. Он посылает импульсы с помощью воздушного поршня — воздуха, который надавливает на поверхность жидкости в специальной камере — вид трубы, являющейся частью аппарата. При той или иной конструкции камеры массу в реакторе приводят в любое заданное движение — возвратно-поступательное, спиральное, центробежное. [c.101]

    Схема спектрографической установки показана на рис. 56, б. Регистрирующим прибором служит спектрограф J2, а в качестве спектроскопического источника света используется спектроскопическая импульсная лампа /, свет от которой, пройдя реакционный сосуд и спектрограф, попадает на фотопластинку 13. Спектроскопическая лампа зажигается через определенный промежуток времени после вспышки фотолитической лампы при помощи блока временной задержки 14. Таким образом по.лучается полный спектр поглощения фотолизуемого раствора. Меняя время задержки, можно получить набор спектров, изменяющихся во времени. В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача таких ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в УФ-области к ксенону добавляют другие газы, например Нг, или ртуть. Используют им-пульсные лампы и с другим наполнением (Ог, N2, Аг). Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической вспышки. А время вспышки импульсной лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии и от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотнонюния между сопротивлением R, индуктивностью L и емкостью С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотпошепие Lj . Уменьшение времени затухания т достигается снижением индуктивности соединительных проводов, а также снижением емкости и индуктивности конденсатора (r yZ, ). При этом уменьшение энергии вспышки E = Wj2 компенсируется за счет увеличения напряжения на конденсаторе U. Увеличение [c.157]

    В практике АК используют волновые процессы, ограниченные во времени и пространстве. Вместо монохроматических колебаний применяют импульсы. Импульс (от лат. impulsus — удар, толчок) — ограниченный по времени колебательный процесс. Амплитуда колебаний в импульсе изменяется от нуля до конечной величины по закону, определяющему форму импульса. Длительностью импульса т обычно считают время, в течение котооого амплитуда превышает 0,1 своего максимального значения. Произведение ст называют пространственной длительностью импульса. Оно определяет область пространства, занимаемую импульсом. [c.18]

    Генератор зондирующих импульсов содержит два основных элемента колебательный контур, включающий в себя излучающий ЭАП (пьезопреобразователь), и электронную схему, обеспечивающую генерацию коротких радиоимпульсов той или иной формы. В колебательном контуре параллельно или последовательно пьезоэлементу включены индуктивность и активное сопротивление. Иногда применяют трансформаторную связь. Упрощенная схема показана на рис. 2.2, а. Резонансную частоту контура с помощью индуктивности Ь подбирают равной антирезонансной частоте пьезопластины (см. 1.5). Сопротивление резистора Я определяет добротность контура. [c.93]

    При разрыве струй образуются капли разных размеров. Режим работы гранулятора должен обеспечивать возникновение капель, которые соответствуют требуемому диапазону размеров гранул. Для получения гранул узкой фракции необходимо применить способ разрыва струй, позволяющий получать монодиспёрсную массу капель. Эта задача решается с помощью вибрационных грануляторов, Б которых на струю накладываются колебательные импульсы, Сейчас распространяются виброгрануляторы с перфорированной боковой поверхностью или днищем, снабженные колеблющейся мембраной с электродинамическим приводом или резонансной пластиной с акустическим импульсом. Они позволяют получать капли практически одинакового размера. Пределы частот колебаний обеспечивающих равномерное дробление струи, и размер монодисперсных капель могут быть определены по формулам [88, 205]  [c.296]

    Многоквантовые эффекты под действием ультрафиолетового или видимого лазерного излучения часто аналогичны наблюдаемым при однофотонном возбуждении соответствующим коротковолновым излучением. Однако инфракрасное многоквантовое возбуждение приводит к явлениям, которые было бы невозможно исследовать без использования лазеров. Вскоре после создания СОа-лазера (разд. 5.7) были проведены эксперименты по наблюдению химических превращений, индуцированных ИК-фотонами высокой интенсивности. Оказалось, что колебательная фотохимия, по крайней мере многоатомных молекул,— это очень широкая область. Хотя в большинстве случаев для достижения энергии разрыва связи требуется поглощение 10—40 ИК-фотонов, при воздействии на молекулу с сильной колебательной полосой поглощения мощного импульс-НОГО лазерного излучения легко происходит с )ото( )рагмента-ция. Например, молекула 5Рб диссоциирует при воздействии СОз-лазера с Х=10,6 мкм [c.76]

    В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача этих ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в ультрафиолетовой области к ксенону добавляют другие газы, например водород или пары ртути. Используют импульсные лампы и с другим наполнением кислородом, азотом, аргоном. Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической лампы. Время светового импульса фотолитической лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии, от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотношения сопротивления R, индуктивности L и емкости С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотношение i = 2 /"L/ . Уменьшение времени затухания х достигается снижением индуктивности соединительных проводов, а также сниже1 м емкости и индуктивности конденсатора (t ]/L ). При этом уменьшение [c.280]

    Шероховатость поверхности измеряется также профилографическим методом. Поверхность детали вдоль определенной пинии точка за точкой прощупывается очень тонким штифтом (радиус 2-10 мкм) при незначительном давлении. Щуп прослеживает все неровности ис- следуемой поверхности, и путь его движения передается механикооптической и электрической системой в виде пропорционально увеличенного сечения профиля. Имеются также профилографы со световым указателем неровностей поверхности. При измерении щуп от датчика импульсов приводится в колебательное движение, которое заставляет его быстро перескакивать с одной точки измерения на другую. Пределы измерения при этом способе составляют 0,1-125 мкм. Измерение и исследования микронеровностей поверхности образцов могут также проводиться с помощью электронного микроскопа. [c.225]

    В выражении (25) или (26) первый член соответствует вращению системы как целого, хотя он через посредство элементов матрицы I" зависит и от относительных координат. В этом члене в действительности должен был бы стоять вектор Ь - I, где / -оператор, соответствующий угловому моменту I в подвижной системе однако этот оператор в предположении его малости мы пока опускаем. Если второе условие Эккарта записывается только лишь для ядерной подсистемы, то I будет включать момент импульса электронов и так называемый колебательный момент импульса ядер, который за счет того, что момент импульса ядер в существенной степени оказывается исключенным этим вторым условием, является малым, и им действительно обычно пренебрегают. Следующие два члена в правой части (25) или (26) связаны с относительным движением частиц в системе. Они как раз представляют основной интерес в квантовохимических задачах, и о них далее будет идти более подробный разговор. И наконец, последний член в (25) или (26) отвечает так называемому кори-олисову взаимодействию относительного движения с вращением системы. (Соответствующая сила, как известно еще со школьной скамьи, приводит к размыванию правого берега у рек, текущих с севера на юг.) Кориолисовым взаимодействием при начальном рассмотрении молекулярных задач также обычно пренебрегают. [c.243]


Смотреть страницы где упоминается термин Импульс колебательный: [c.1055]    [c.181]    [c.45]    [c.286]    [c.48]    [c.51]    [c.45]    [c.286]    [c.268]    [c.162]    [c.162]    [c.99]    [c.51]    [c.118]    [c.123]    [c.154]    [c.221]    [c.266]    [c.14]    [c.124]    [c.564]   
Краткий курс физической химии (1979) -- [ c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Импульс



© 2025 chem21.info Реклама на сайте