Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофильный центр

    Величина р является константой в ряду однотипных реакций и различна для реакций разного типа. Она характеризует чувствительность данной реакции к изменению электронной плотности на реакционном центре. Например, для щелочного гидролиза замещенных этилбензоатов в 85%-ном этаноле р = 2,6, следовательно, реакция существенно ускоряется с ростом а, т. е. с уменьшением электронной плотности на реакционном центре (рис. 41). Это нетрудно понять, поскольку реакционный Центр этой реакции является электрофильным центром, который атакуется нуклеофильной частицей ОН". Наоборот, в реакции бензоилирования ароматических аминов. [c.128]


    Принцип ЖМКО является очень общим, но пока лишь качественным законом, так как до сих пор не существует надежного и универсального способа количественной оценки значений жесткости и мягкости кислот и оснований. Он позволяет однозначно объяснить рассматривавшееся выше несоответствие между основностью и нуклеофильностью. Оно связано с тем, что основность характеризует сродство основания к протону, являющемуся жесткой кислотой, а нуклеофильность — сродство реагента к электрофильному центру ароматического субстрата, являющегося из-за сильной делокализации электронов мягкой кислотой. Следовательно при прочих равных условиях большей основностью должны обладать более жесткие основания, а большей нуклеофильностью — мягкие основания. Жесткий фторид-ион — более сильное основание и более слабый нуклеофил, чем мягкий и менее основный иодид-ион. Жесткий и сильно основный этилат-ион — более слабый нуклеофил, чем значительно менее основный, но мягкий этилмеркаптид-анион и т. д. [c.159]

    Помимо рассматривавшегося до сих пор электрофильного центра (карбонильной группы), карбонильные соединения имеют еще один реакционный центр — нуклеофильный а-углеродный атом. По- [c.170]

    В присутствии таких Со(1П)-комплексов скорость гидролиза амидной связи увеличивается в 10 раз по сравиеиию со скоростью щелочного гидролиза. Подобное ускорение реакций сравнимо со скоростями, полученными для карбоксипептидазы А и ее субстратов. Отметим, что в процессе а, который, по-видимому, предпочтительнее процесса б в случае иона Со(П1), карбонильная группа поляризуется и гораздо легче атакуется молекулой воды извне, чем в отсутствие комплекса. Таким образом, ион металла опять-таки играет роль сверхкислоты. Другими словами, прямая поляризация карбонильной группы ионом металла создает более электрофильный центр на атоме углерода. Естественно, различные ионы металла в этом отношенпп обладают различными свойствами, зависящими в основном от их общего заряда, размера, координационного числа и легкости замещения (обычно) координированной молекулы воды. [c.358]

    Для осуществления механизма ППК необходимо образование ковалентного соединения между флавиновым коферментом и субстратом для того, чтобы стал возможным перенос электронов от одной молекулы к другой. Поскольку это ионная реакция, то молекула флавина должна иметь электрофильный центр, легко атакуемый нуклеофильным субстратом. При исследовании флавино-вого ядра обнаружены четыре центра, способных подвергаться атаке, среди которых положение 4а, по-видимому, является наиболее электрофильным. Действительно, реакционноспособность возрастает в какой-то степени благодаря индуктивному эффекту прилегающих амидной и амидиновой групп. [c.414]


    Несмотря на то что многие модели свидетельствуют об активности положений 4а и атома N-5, на вопрос, где точно находится электрофильный центр во флавинах, пока нет удовлетворительного ответа. [c.416]

    Для понимания многих химических процессов в растворах оказалось целесообразным разделить растворители на донорные (ДПЭ — донор пары электронов) и акцепторные (АПЭ — акцептор пары электронов) в зависимости от доминирующего в молекуле реакционного центра. Однако нельзя упускать и виду, что в молекулах растворителя могут одновременно существовать нуклеофильные и электрофильные центры, которые могут вступать в реакцию в зависимости от свойств взаимо действующей с ними частицы. [c.444]

    Нуклеофильные растворители могут полностью или частично блокировать электрофильный центр субстрата, препятствуя протеканию реакции. Наиример, ацилирование пероксида водорода уксусным ангидридом в метаноле при обычных условиях не протекает. 15 то же время m/jm-бутиловый спирт способствует прохождению реакции, указывая на то, что, координируясь с реагентом, он может выполнять функцию основного катализатора  [c.240]

    Основный растворитель может связывать Я-кислоту — катализатор, понижая эффективность ее действия, или блокировать электрофильный центр кислоты Льюиса, конкурируя с нуклеофильным реагентом. Примером может служить ингибирующее влияние спиртов и воды на эпоксидирование олефинов алкилгидропероксидами в присутствии соединений металлов с переменной валентностью. На первой стадии этого процесса алкилгидропероксид, как нуклеофил, образует с катализатором донорно-акцепторный комплекс. [c.241]

    Карбанион переносится затем на электрофильные центры других молекул. Приведенный механизм подтверждается результатами опытов Бреслоу и сотрудников, которые синтезировали активный бензальдегид, конденсируя его с тиамином. Активный продукт затем легко вступает в реакцию ацилоиновой конденсации с регенерацией тиамина  [c.255]

    Электрофилы с электрофильным центром на атоме кислорода встречаются очень редко, так как кислород не склонен нести положительный заряд. Но есть одна реакция, которую необходимо здесь упомянуть. [c.372]

    При описании этого и подобных процессов пользуются следующей терминологией нуклеофильная частица нуклеофильный агент, т. е. Вг ) атакует положительный (электрофильный) центр в молекуле субстрата (в нашем примере это СН ОН термин субстрат перенят из биохимии и означает объект, подвергающийся некоторому воздействию ). Поскольку нас интересует в первую очередь то, что происходит с органическим веществом — спиртом, мы рассматриваем эту реакцию как нуклеофильное замещение в молекуле спирта. [c.155]

    Исследовалась зависимость селективности растворителей от их химического строения и на основе установленных закономерностей сформулирован ряд принципов для направленного поиска эффективных экстрагентов [47—49] 1) введение в молекулу растворителя заместителей или гетероатомов с низкими вкладами в энтальпию испарения и с высокими значениями констант Гам-мета— Тафта 2) переход от алифатических соединений к соответствующим циклическим и гетероциклическим аналогам, проявляющим более высокую селективность 3) повышение растворяющей способности растворителей путем скелетной изомеризации молекул, предпочтительно фрагментов, удаленных от электрофильных центров 4) уменьшение размеров цикла или числа углеродных атомов в молекулах алифатических растворителей 5) взаимное расположение заместителей в молекулах растворителей, обеспечивающее минимальное экранирование электрофильных центров и невозможность образования внутримолекулярных водородных связей 6) переход от сильноассоциированных растворителей к слабоассоциированным производным (например, метилирование амидов, цианоэтилирование спиртов) 7) использование в качестве разделяющих агентов неидеальных смесей [c.57]

    Коротко описанные вьпне реакции, при всей их широте и значимости, далеко не исчерпывают тот огромный синтетический потенциал, который заложен в химии карбонильной группы. Качественно новые возможности появляются в системах, где карбонильная или аналогичпая ей функцня находится в соиряжешш с двойной связью С С. В таких структурах, типичными представителями которых могут служить системы 77—79, я-электроны кратных связей образуют единое облако, в котором поляризация н другие электронные эффект ,г легко распространяются из конца в конец этого фрагмента. Поэтому в реакциях с нуклеофилами такие соединения могут вести себя и привычным образом — как карбонильные электрофилы или выступать в роли электрофилов нового типа, в которых электрофильным центром является -углерод-пь[й атом, т.е. как электрофилы 80—82. [c.91]

    Реакции, в которых электронные пары при разрыве связи целиком остаются у одного из атомов, называют гетеролитическими. Таковы реакции (I) и (IV). В первом случае электронная пара, за счет которой была образована связь С—I, остается у иона I . Новая связь С—О возникает за счет неподеленной пары электронов атома О иона ОН . В реакции (IV) протон покидает один атом О, оставляя электронную пару этому атому, а новая связь образуется за счет неподеленной пары электронов атома О молекулы воды, принимающей протон. Частица — донор электронной пары называется нуклеофильной. Частица, которая взаимодействует с этой электронной парой, называется электрофильной. Например, в реакции H3I с ОН- нуклеофильной частицей является гидроксид-ион. Он атакует электрофильную частицу H3I или, точнее, электрофильный атом (центр) в этой частице, а именно атом С. При этом в электрофильном центре происходит замещение одной нуклеофильной частицы (I-) на другую (ОН-). Поэтому такая реакция называется реакцией нуклеофильного замещения. [c.367]


    Атом кислорода, несущий отрицательный заряд, — явление довольно распространенное, стоит только вспомнить о кислотах, солях, алкоголятах. Подобное состояние не представляет для кислорода чего-либо необычного особенно большой реакционной способности отрицательно заряженный атом кислорода не проявляет. Иначе обстоит дело с положительно заряженным углеродом испытывая недостаток электронов, он стремится этот недостаток колшеи-сировать. Это может произойти в ходе реакции с веществами, обладающими избытком электронов (отрицательный заряд, свободная электронная пара) и в свою очередь стремящимися к реакции с по- ложительными центрами как известно, такие реагенты называют нуклеофильными. Таким образом, большинство реакций карбо-. пильных соединений при всем их внешнем разнообразии — это реакции, в которых положительно заряженный карбонильный углерод (электрофильный центр молекулы) взаимодействует с ну- [c.173]

    Величина р является константой в ряду однотипных реакций и различна для реакций разного типа. Она характеризует чувствительность данной реакции к изменению электронной плотности на реакционном центре. Например, для щелочного гидролиза замещенных этилбензоатов в 85%-ном этаноле р = 2,6, следовательно, реакция существенно ускоряется с ростом а, т. е. с уменьшеиие.м электронной плотности на реакционном центре (рис. 57). Это нетрудно понять, поскольку реакционный центр этой реакции является электрофильным центром, который атакуется нуклеофильной частицей ОН". Наоборот, в реакции бензоилирования ароматических аминов, где аминогруппа является нуклеофильным центро.м, атакуемым электрофильным бензонлирующим компонентом, повышение электронной плотности должно приводить к повышению [c.182]

    Ключевая стадия показанной цепочки превращений — присоединение енолята 91 по двойной связи енона 90 [14с] (реакция Михаэля). Первичным продуктом этой реакции является тоже енолят-анион 92, способньхй к обратимой изомеризации в енолят 93. Нуклеофильный центр последнего пространственно сближен с имеющимся в молекуле электрофильным центром, карбонильной группой циклогексанового кольца, благодаря чему в условиях реакции достаточно легко протекает внутримолекулярная альдольная конденсация, сопровождающаяся дегидратацией, и в результате образуется би-циклический ендион 94. Показанный дикетон является одним из важнейших промежуточных полупродукгов в синтезе полициклических терпеноидов и [c.114]

    Замысел работы заключался в разработке способа использования легко Доступного в энантиомерно чистом виде 2,3-0-изопропилиден-0-трент 164 Вкачестве предшественника бифункционального электрофила, который да-Яве предполагалось вводить в реакции последовательного контролируемого оочетания с набором нуклеофилов. Для достижения этой цели 164 был превращен в смешанный тозилат-трифлат 165, что обеспечило создание двух электрофильных центров, различающихся по своей активности. Далее тре- [c.173]

    Катионная полимеризация мономера 25 инициируется координацией инициатора, РР5, с кислородным атомом ангидро-цикла, что ведет к оксони-евому иону 26. Последний своим электрофильным центро.м, С-1, атакует другую молекулу 25 по кислороду ангидро-цикла с образованием нового ок-сония, 27, являющегося уже производным дисахарида. Повторение такого процесса приводит к последовательному наращиванию цепи путем стереоспецифического формирования глюкозидных связей (стереоспецифичность обеспечивается обращением конфигурации при С-1 в каждом таком акте раскрытия ангидро-цикла мономера 25), Понятно, что сама природа используемой реакции и структура мономера определяют необходимые стерео- и регио специфичность полимеризации, Дебензилирование образующегося таким путем полимера 28 дает целевой полисахарид 23. [c.296]

    Внутри живой клетки такой процесс катализируется ферментами, которые, как правило, работают стереоспеци-фично это значит, что они будут избирательно вовлекать в реакцию какой-либо один из диастереомеров, а также осуществлять реакцию по какому-либо одному механизму, что в итоге приведет к продукту одной изомерной формы. Схематично такую реакцию можно представить, моделируя реагент и фермент (кофермент) в виде единой молекулы, на одном конце которой находится остаток фосфорной кислоты, катализирующий отщепление гидроксильной группы, на другом конце — нуклеофильный остаток (допустим, азотистого типа), атакующий электрофиль-ный атом углерода. Синхронное воздействие каталитического(кислотного) и нуклеофильного фрагментов на электрофильный центр а-глюкопира-нозы приводит к соответствующему р-гликозиду (схема 3.6.3). [c.53]

    Электрофильным центром является углеродный атом карбонильной группы, при атаке которого нуклеофилом (карбанионом, например) реализуется замещение коферментной функции (СоА-З-). Нуклеофильную активность в молекуле активного ацетила" в условиях основного катализа проявляет метильная группа основание отщепляет от метила ацетильного фрагмента закисленный водород, формируя таким способом карбанионный центр. Суммируя эти возможности ацетил-З-СоА, нетрудно увидеть, что одна молекула активного ацетила выступает в роли нуклеофила и может замещать кофер-ментиый фрагмент другой такой же молекулы, образуя уже четырехуглеродный фрагмент — ацетоацетил-З-СоА. [c.132]

    Совершенно очевидно, что относительная нуклеофильность различных иуклеофгшов должна изменяться для реакции замещеиня у -гибридного углерода ио сравнению с замещением у -гибридного углерода и тем более у другого электрофильного центра, например у атома серы в нри обмене лигандов у [c.768]

    Механгам этой реакции более сложен. Мягкий нуклеофильный агеит трнфеннлфосфнн атакует тетрахлорнд углерода но атому хлора как мягкому электрофильному центру этой молекулы. Анион С1зС" является хорошей уходяш ей группой, так как хлороформ является достаточно сильной С-Н-кислотой (гл. 3, ч. I)  [c.873]

    Для получения максимальных выходов по реакции Фриделя — Крафтса с ангадридами [12, 13] берут два моля хлористого ялю-ми ния на моль аигидрида. Одиа молекула катализатора вызывает расщепление ангидрида ( Пр1гчем одна из карбоксильных групп Превращается в смешанную алюминиевую соль, а другая — в хлорангщфид ) вторая молекула хлористого алюминия играет обычную роль катализатора в реакции Фриделя — Крафтса. В согласии с такой точкой зрения и современной теорией замещения в ароматическом ядре, реакция может быть представлмга как взаимодействие ароматического ядра с ком нлексом I, имеющим электрофильный центр на ацильном ионе  [c.197]

    Интересной и важной в плане получения биологически активных веществ реакцией является восстановление квазиароматических гетероциклических систем с помощью комплексных гидридов металлов, которое рассматривается как нуклеофильная атака гидридиона на наиболее электрофильный центр. Квазиарома-тические системы, у которых атом азота вносит лишь один электрон в совместную я-систему, восстанавливаются значительно легче бензоидных. Образование четвертичных солей еще более облегчает тенденцию к присоединению к ним нуклео- [c.240]


Смотреть страницы где упоминается термин Электрофильный центр: [c.141]    [c.167]    [c.416]    [c.397]    [c.446]    [c.35]    [c.39]    [c.41]    [c.287]    [c.7]    [c.53]    [c.113]    [c.164]    [c.174]    [c.205]    [c.139]    [c.62]    [c.63]    [c.409]    [c.767]    [c.768]    [c.37]    [c.8]    [c.73]   
Органическая химия (1998) -- [ c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Электрофильность



© 2025 chem21.info Реклама на сайте