Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Имплантация III

    На современном уровне рассмотрен механизм коррозионной усталости. Специальной темой является вопрос о коррозии стальной арматуры, поскольку продолжает иметь место коррозия железобетонных конструкций. Добавлена новая глава по сплавам кобальта эти сплавы ввиду своей необычайно высокой стойкости к эрозии и фреттинг-коррозии получили большое практическое применение как материал для хирургической имплантации. Обновлены задачи и ответы. [c.14]


    При сравнении электрохимического поведения сплавов системы Ре-Сг, полученных объемным легированием и ионной имплантацией, установлено соответствие между дозами ионного легирования хромом и содержанием хрома в железе и показано, что доза 5 10 ион/см при ионном легировании железа хромом соответствует электрохимическому поведению объемно-легированного сплава с 4,9 % Сг, а доза 2 10 ион/см - поведению сплавов, содержащих более 13 % Сг. [c.74]

    Имплантация тантала, кроме воздействия на кинетику анодной реакции, оказьшает влияние и на кинетику катодной реакции. Так, при потенциале - 1150 мВ плотность катодного тока на железе составляет 50 мкА/мм , а на железе, имплантированном танталом, 10 мкА/мм . Кроме того, плотность тока водородного обмена на тантале (10" мкА/ мм ) на порядок вьппе, чем на железе. Это связано с тем, что образующаяся на имплантированных образцах при анодной поляризации пленка Таг 05 при катодной поляризации более стойкая, чем пленка на чистом железе лли железе, имплантированном хромом. [c.75]

    Ионная имплантация свинца, который в нормальных условиях совершенно нерастворим в железе, не вносит существенных качественных изменений в характер поляризационных кривых для образцов как с низкой (5 Ю " ион/см ), так и с высокой (2 10 ион/см ) дозой имплантированного свинца по сравнению с чистым железом, однако приводит к количественным различиям между ними. Это различие связано с заметным торможением реакции выделения водорода на железе (Ь 10 и [c.75]

    Анализ экспериментальных данных показывает, что свойства легирующих элементов передаются поверхностным слоям сталей и сплавов при комплексном их легировании методом ионной имплантации. [c.75]

    Отмечено отличие и в распределении легирующих элементов для двойных и тройных поверхностно-легированных сплавов. Например, при совместной ионной имплантации хрома и никеля при дозах легирования от 10 до 10 ион/см энергии 50 кэВ и температуре 453 К на кривой распределения хрома наблюдается только один максимум на глубине 50 нм от поверхности, а для никеля на глубине 30 нм. Для поверхностно-легированного в тех же условиях двойного сплава на кривой распределения хрома имеются два максимума непосредственно у поверхности и на глубине 50 нм. [c.76]

    Такая система покрытий обеспечивает защиту стальной основы от водородного охрупчивания и коррозии и изнашивания гидро- или газоабразивным потоком. Двухслойное покрытие с наружным слоем, состоящим в основном из окиси алюминия, можно получать последовательным плазменным напылением с плавным переходом от А1 к А12 О3 или окислением части нанесенного алюминиевого покрытия. При этом окисление можно проводить твердым анодированием, анодным оксидированием, ионной имплантацией, окислением в тлеющем разряде и другими методами. [c.111]


    При использовании собственных радиоизотопов элемента равномерность распределения метки в первом случае гарантируется, во втором контролируется путем сравнения удельной активности порций металла, взятых из различных участков плавленого образца. Из других способов введения готовой метки в образец можно упомянуть метод поверхностной имплантации радиоактивных ионов, использовавшейся, в частности, при определении толщины оксидной пленки. [c.206]

    Ионная имплантация. М. Металлургия, 1985. 391 с. [c.310]

    ИОННАЯ АТМОСФЕРА, см. Дебая - Хюккеля теория. ИОННАЯ ИМПЛАНТАЦИЯ, см. Легирование. [c.257]

    От всех выше приведенных методов отличается способ ионной имплантации, суть к-рого заключается в том, что пов-сть металла (или полупроводника) бомбардируют в [c.581]

    См. также Импеданс Имплантация ионная 2/485 3/421  [c.611]

    См. также Имплантация ионная [c.638]

    Изменение химического состава поверхности вследствие имплантации первичных ионов. [c.356]

    Ионная имплантация — процесс получения тонких покрытий из сплавов посредством ионной бомбардировки поверхности металла в вакууме. Такие покрытия, например из Т1, В, Сг или V, получайт специально для придания изделиям стойкости к износу и высокотемпературному окислению [2]. [c.231]

    Способность сплавов на основе кобальта противостоять фреттинг-коррозии обусловила успешное использование виталлиума при имплантации в органы человека. Уотерхаус 13] показал, что, если винты из виталлиума, завинченные в металлические пластины, подвергнуть воздействию переменного напряжения (испытание головки винта на трение), то они меньше разрушаются в солевых растворах, чем изготовленные из нержавеющей стали. [c.371]

    Для решения этой задачи большое значение приобретает разработка оптимальных методов поверхностного легирования, таких, как термодиффузионная обработка, электроискровое легирование, ионная имплантация, электронно-лучевая обработка, которые позволяют обрабатывать поверхности, непосредственно соприкасающиеся с рабочими средами, расширяют возможности и эффективность использования катодных покрытий. Перспективным методом поверхностного легирования металлов и сплавов является ионная имплантация. Она позволяет регулировать толщину легированного слоя, концентрацию вводимых компонентов, их распределение по глубине за счет изменения энергии и рпзы внедрения. Толщина имплантированного слоя в зависимости от энергии может составлять от 0,1 до 3 мкм. Изменение коррозионной стойкости после ионной имплантаций происходит за счет обеспечивания пассивного состояния при имплантации металлами, разупрочнения структуры, приводящего к повышению сродства поверхности к кислороду, изменения дефект-но сти решетки. При этом важно, что для повышения защитных свойств вводимый элемент может образовывать с защищаемым металлом или сплавом метастабильный твердый раствор внедрения или замещения в широком диапазоне концентраций. [c.73]

    Ионное легирование зависит от природы легирующих элементов. Так, имплантация инертных газов практически не оказывает влияния на электрохимическое поведение основного металла, за исключением того, что процесс ионной имплантации может приводить к загрубению обраба-тьшаемой поверхности, утолщению воздушной окисной пленки на железе. [c.73]

    Имеются экспериментальные подтверждения положительного влияния на способность железа к пассивации ионного легирования титаном и кремнием. Ионная имплантация этих элементов при дозах легирования от 0,1 до 1 10 ион/см , энергии 500 кэВ и температуре подложки от 293 до 453 К обеспечивала максимальную концентрацию имплантированного элемента на уровне 20 %. При таком содержании титана или кремния в поверхностно-легированном железе резко уменьщается плотность тока пассивации в 0,5 М растворе СН3СООН + СНзСООЫа при pH = 5,0 и температуре 298 К. С увеличением числа циклов вольтамперометрии уменьшается различие в электрохимическом поведении чистого железа и железа, поверхностно легированного этими элементами, а после 42 циклов это различие в их поведении практически отсутствует. [c.74]

    Несмотря на то, что толщина метастабильного поверхностного сплава Ре-Та составляет около 7 нм, благоприятное воздействие тантала на коррозионное поведение железа оказывается весьма стойким. Эту стойкость объясняют тем, что растворение и разрушение поверхности сплава Ре—Та происходит локально и неоднородно и связано с избирательным растворением железа из поверхностного слоя сплава. После девяти полных разверток потенциокинетической поляризации общее содержание тантала в поверхностном слое сплава составляет около 90 % от начального содержания тантала после имплантации. [c.75]

    Имплантация ионов Nb с энергией 30 кэВ при дозах 5 10 и 5 -10 ион/см в поверхность стали марки Х18Н9Т позволила получить легированный поверхностный сплав на глубине 20 нм. Увеличение концентрации ниобия не меняет относительного содержания железа, хрома и никеля в поверхностном слое стали, но существенно повышает его коррозионную стойкость в 20 %-ной серной кислоте после предварительной катодной обработки в течение 15 мин, смещая потенциал коррозии в положительную сторону. Однако максимальная концентрация ниобия в стали марки Х18Н9Т при этом ограничена 20 % в связи с распылением поверхности при дозе 5 10 ион/см . [c.76]


    Для улучшения коррозионной стойкости титана применяют поверхностное легирование его палладием, используя для этой цели метод ионной имплантации. Было показано, что имплантация палладия в поверхностные слои титана — эффектавный способ повышения его пассивируемости и коррозионной стойкости. [c.77]

    Другим направлением проводимых исследований является изучение процессов дефектообразования при ионной имплантации пластин арсенида галлия. Прямые экспериментальные исследования с привлечением современных методов дополнялись расчетами по модельным компьютерным программам. Было изучено влияние режимов имплантации, типа и режимов постимплантационного отжига на структуру имплантированных слоев. Установлено влияние поверхности подложки на концентрацию и тип точечных дефектов, образующихся при имплантации. Показано, что в процессе активирующего отжига происходит пространственное разделение межузельных атомов и вакансий и обогащение поверхностного слоя последними. Изучены механизмы влияния дислокационной структуры подложек на характер распределения имплантированной примеси и радиационных дефектов по площади подложек. Результаты исследований представляют практический интерес при разработке процессов импланта-ционного легирования полупроводников. [c.158]

    Найден особый тип И., в к-рых отсутствует трансляционная симметрия кристалла, поскольку существует ось симметрии 5-го порядка. Эти соед. наз. квазикристаллич. (см. Квазикристалл), или икосаэдрическими. Впервые такое соед. было получено как метастабильная фаза в системе А1-Мп при содержании ок 16 ат.% Мп в условиях закалки из жидкого состояния. Для ряда сплавов в области концентраций, где образуются И, в условиях большой скорости охлаждения расплава пол>т)ают метастабильные аморфные фазы, или металлич. стекла (напр., в системах Си-7г, №-Т1). Аморфные И. возможно получить также при конденсации из пара, сильной деформацией смеси порошков, при ионной имплантации или путем радиац. воздействия на И. [c.247]

    Помимо природы, вида и условий возбуждения св-ва К. (спектр и энергетич. выход свечения, длительность послесвечения) существенно зависят от технологии их получения, к-рая обычио включает прокаливание аморфной шихты, состоящей из оси. в-ва и активирующих добавок, прн т-рах 900-1200 °С. Для улучшения процесса кристаллизации в шихту иногда добавляют плавни (К.С1, LiF, a lj и др.). В процессе прокаливания происходит частичное замещение иоиов осн. в-ва ионами активирующих примесей. Для эюй же цели применяют ионную имплантацию, электролитич активацию, лазерные распыление и отжиг, др. методы, позволяющие получать К. при значительно более низкой т-ре. В ряде случаев синтез осуществляют в атмосфере инертных газов. Для формирования центров свечения заданной структуры и получения требующихся для практики св-в свечения в К. часто вводят помимо активатора соакти-ваторы и сенсибилизаторы. [c.535]

    Характер взаимод. твердых Н. с др. компонентами смесей [смачивание, адсорбция, адгезия, трение и(или) хим. р-ции] определяется гл. обр. составом Н. и структурой их пов-сти. Св-ва пов-сти зависят не только от природы и фазовоц структуры Н., но и от способа и условий их получения,-а также от обработки пов-сти. В последнем случае наиб, широко используют след. физ. и хим. методы адсорбционная, в т.ч. хемосорбционная, модификация с помощью ПАВ нанесение спец. покрытий (напр., защитных, эластичных) обработка окислителями или восстановителями создание на пов-сти функц. групп, прививка молекул, имплантация нейтральных атомов или ионов воздействие высокоэнергетич. излучений (электромагнитных, электронных, нейтронных) и электрич. разрядов. Важное значение имеют также общая или уд. величина пов-сти Н., ее дефектность и шероховатость. [c.168]

    Для получения термически неустойчивых соед., однородных смесей тонких порошков (с послед, их спеканием), для проведения р-ций в матрично-изолированном сострянии используют криогенную технику (см. криохимия). Для ионной имплантации и синтеза неустойчивых в-в применяют атомные, ионные, молекулярные или кластерные пучки. [c.215]

    П. т. основывается на создании в приповерхностном слое подложки областей с разл. типами проводимости или с разными концентрациями примеси одного вида, в совокупности образующих структуру полупроводникового прибора или интегральной схемы. Преимуществ, распространение в качестве полупроводникового материала для подложек в П. т. получил монокристаллич. Si. В ряде случаев используют сапфир, на пов-сть к-рого наращивают гетероэпитак-сиальный слой (см. Эпитаксия) кремния и- или р-типа проводимости толщиной ок. 1 мкм. Области структур создаются локальным введением в подложку примесей (посредством диффузии из газовой фазы или ионной имплантации), осуществляемым через маску (обычно из плетси SiOj), формируемую при помощи фотолитографии. Последовательно проводя процессы окисления (создание пленки SiO ), фотолитографии (образование маски) и введения примесей, можно получить легир, область любой требуемой конфигурации, а также внутри области с одним типом проводимости (уровнем концентрации примеси) создать др. область с др. типом проводимости. Наличие на одной стороне пластины выходов всех областей позволяет осуществить их коммутацию в соответствии с заданной схемой при помощи пленочных металлич. проводников, формируемых также с помощью методов фотолитографии. [c.556]

    Очищенные пластины с выращенным на них эпитаксиальным слоем 81 или без него подвергают термич. обработке, включающей окисление, диффузию примесей или ионное легирование, отжиг пластины (в том случае, если примеси вводились ионным легированием), пиролитич. осаждение тонких пленок или их химическое осаждение из газовой фазы, гегтерирование. При реализации этих процессов осуществляется формирование активных областей и др. компонентов планарных структур. Вместе с тем термич. обработка приводит к возникновению мех. напряжений в пластине, вызывает образование дефектов, перераспределение примесей в объеме пластины и в приповерхностном слое. Чтобы уменьшить отрицат. последствия, термич. обработку проводят при сравнительно невысоких т-рах (ниже 900 °С), а для ускорения процесса применяют разл. способы, напр, окисление 81 проводят не в сухой, а во влажной среде при повыш. давлении. Для введения примесей все чаще вместо диффузии применяют ионное легирование (ионную имплантацию), к-рое по сравнению с диффузией обладает рядом преимуществ - универсальностью (возможность вводить практически любые в-ва в любую подложку), высокой воспроизводимостью, возможностью управлять профилем распределения примеси и изменять концентрацию вводимых примесей в широких пределах. [c.557]


Смотреть страницы где упоминается термин Имплантация III: [c.37]    [c.506]    [c.50]    [c.75]    [c.75]    [c.76]    [c.76]    [c.77]    [c.77]    [c.79]    [c.605]    [c.50]    [c.159]    [c.260]    [c.479]    [c.536]    [c.130]    [c.63]    [c.614]    [c.615]   
Биология Том3 Изд3 (2004) -- [ c.87 , c.90 , c.259 ]




ПОИСК







© 2025 chem21.info Реклама на сайте