Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокнит, химическая стойкость

    Нитроновое волокно по своей прочности уступает нейлону, капрону и лавсану, но оно превосходит их по химической стойкости. Температура плавления нитрона также высокая и составляет 250° С. Нитроновое волокно очень похоже на шерсть и служит великолепным материалом для изготовления тепловых пушистых свитеров и кофточек, различных обивочных тканей, занавесей и т. п. Ткани из нитронового волокна очень легко стираются. Как и лавсан, нитрон не выгорает на солнце и не портится молью. [c.351]


    Жидкие силиконы можно перегонять при нормальном давлении без разложения. Они представляют собой жидкости соломенно-желтого цвета с весьма высоким индексом вязкости и низкой температурой застывания и могут применяться в качестве специальных смазочных масел. Некоторые силиконы вследствие высокой теплостойкости могут применяться в качестве теплоносителей. Из них можно вырабатывать также консистентные смазки, отличающиеся хорошей теплостойкостью и химической стойкостью. Силиконовые смолы с асбестом и стеклянным волокном применяют как уплотнители и прокладочный материал. Силиконовые каучуки стойки, длительно выдерживают воздействие температур до 200°, не становясь при этом хрупкими и не размягчаясь. Силиконовую резину можно вальцевать и перерабатывать в шкурку [161]. [c.209]

    В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повыщаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон. [c.78]

    Широкое развитие получают сополимеры винилхлорида с другими винильными соединениями, из коих следует особо отметить сополимер с винилиденхлоридом, на базе которого изготовляют синтетическое волокно саран [137], отличающееся высокой химической стойкостью. [c.345]

    Дренажи мембранных аппаратов. Эффективность всех рассмотренных конструкций, кроме аппаратов с полыми волокнами, в значительной степени зависит от материала дренажей, служащих для восприятия высокого давления и отвода фильтрата. К материалам дренажей предъявляются следующие требования 1) высокая пористость с целью возможно более полного использования рабочей площади прилегающих мембран и снижения гидравлического сопротивления в перпендикулярном и параллельном к плоскости мембраны направлениях 2) достаточная жесткость, т. е. способность воспринимать высокое давление в течение длительного времени, сохраняя приемлемые гидравлические характеристики 3) способность формоваться в тонкие листы и трубки 4) химическая стойкость в фильтрате и микробиологическая инертность 5) невысокая стоимость материала, занимающего до 50% объема аппарата (см. также стр. 273). [c.167]


    Для очистки запыленного воздуха фильтрованием весьма перспективны ткани и нетканые материалы из различных натуральных и синтетических волокон. Волокно нужно выбирать в первую очередь по экономическим соображениям, поскольку при очистке атмосферного воздуха особых требований к химической стойкости материала и к рабочей температуре не предъявляется. [c.95]

    Эпоксидные олигомеры используются также в качестве связующих для стеклопластиков (они имеют хорошую адгезию к стеклянному волокну, малое водопоглощение и химическую стойкость). [c.90]

    Для очень тонкой очистки газов от высокодисперсных и радиоактивных аэрозолей (иногда такую очистку называют высокоэффективной, или абсолютной ) используют фильтры с перегородками, в которых в качестве фильтрующего материала применяют ультратонкие полимерные волокна, получившие название фильтрующих материалов ФП (фильтры Петрянова), Эти материалы, изготовляемые на основе волокон из перхлорвинила, полиарилатов, эфиров целлюлозы и т. д. обладают высокой химической стойкостью, механической прочностью и термостойкостью. [c.235]

    Поликристаллические неорганические волокна получают в больших количествах. Недостаток этих волокон - очень высокая чувствительность к механическим повреждениям. Малая плотность, высокая прочность и химическая стойкость углеродных, борных, стеклянных, карбидокремниевых, кварцевых и других волокон позволяют широко использовать их дня армирования пластмасс. [c.70]

    В последнее время найден способ получения волокна из политетрафторэтилена. Волокно отличается исключительно высокой химической стойкостью, оно нерастворимо, негорюче, выдерживает длительное нагревание при 200—260° (начинает разрушаться лишь при 400°) и отличается высокой устойчивостью к истиранию. [c.259]

    При создании материалов, работающих в условиях высоких температур и больших динамических нагрузок, целесообразно использовать в качестве наполнителя углеродные волокна или их филаменты, обеспечивающие существенное упрочнение композиции и более равномерное распределение компонентов шихты [1—3]. В качестве связующих целесообразно использовать термореактивные полимеры фуранового ряда, имеющие высокую термическую и химическую стойкость и большой пиролитический остаток 1[4, 5]. При изготовлении композиций из термореактивных смол с порошкообразными наполнителями смолу обычно растворяют в органическом растворителе и в раствор вводят катализатор отверждения ионного типа. После удаления растворителя, например ацетона, образующуюся твердую массу дробят и формуют. В случае использования углеродных фила-ментов применение ацетонового раствора полимера нежелательно из-за неизбежного разрушения филаментов при дроблении твердой массы. [c.206]

    Полипропиленовые и полиэтиленовые волокна получаются из соответствующих полимеров (разд. 31.1.1). Они обладают высокой химической стойкостью, влагостойкостью, устойчивостью к гнилостным бактериям. Недостатком их является низкая теплостойкость. Применяются для изготовления канатов, рыболовных снастей, спецодежды, ковров, одеял и др. [c.648]

    Полиолефиновые (полипропиленовые и полиэтиленовые) волокна. Такие волокна очень перспективны вследствие доступности и дешевизны исходного сырья. Обладают высокой химической стойкостью, влагостойкостью, устойчивостью к гнилостным бактериям. Недостатком их является низкая температура плавления. Ткани из полипропилена и полиэтилена могут применяться для изготовления изделий технического назначения (рыбе- [c.420]

    Высокие мех. характеристики в сочетании с низкой плотностью, хим. и термич. стойкостью (этим отличаются жесткоцепные полимеры они содержат циклич. группы в основных цепях макромолекул) определяют все более широкое использование ориентир, полимерных волокон тросы, канаты, ткани, армирующие элементы в разнообразных композиц. материалах и др. В технике широко распространены, напр., полиамидные, полиолефиновые, полиэфирные, поли-имидные, полиакрилонитрильные волокна. См. также Волокна химические, Формование химических волокон. [c.409]

    Из поливинилхлорида получают синтетическое волокно— хлорин. Ткаии из хлорина обладают высокой химической стойкостью и являются электроизоляторами. [c.362]

    Привитая сополимеризация широко используется для модификации поверхностных свойств полимерных (натуральные и синтетические волокм, пленки) и неполймерных материалов (глины, стеклянные волокна). В результате прививки происходит изменение физико-механических свойств, термостойкости, химической стойкости, водопоглощения, погодостойкости, адгезии, стойкости к воздействию микроорганизмов, смачиваемости и электрических свойств модифицируемых поверхностей, их цвета. С помощью прививки можно регулировать газо- и паро-проницаемость полимерных пленок и волокон, получать ионообменные мембраны. [c.63]

    Полимер И образует жесткие пленки и волокна, которые отличаются хорошей химической стойкостью. [c.251]


    Химические волокна. Химические волокна (см. стр. 349), как правило, обладают более высокой стойкостью к тепловому и химическому воздействию, чем природные волокна, шерсть и хлопок. Сопоставление их свойств дано в табл. VIII-1 (качественное) и в табл. VIII-2 (количественное). [c.354]

    Стеклянное волокно придает пластмассам высокую механическую прочность. Одновременно оно повышает химическую стойкость и теплостойкость. [c.267]

    Стеклянная вата и волокно. При нагревании стекло размягчается и легко вытягивается в тонкие и длинные нити. Тонкие стеклянные нити не имеют и признаков хрупкости. Их характерным свойством является чрезвычайно высокое удельное сопротивление разрыву. Нить диаметром 3—5 мкм имеет сопротивление на разрыв 200—400 кг/мм , т, е. приближается по этой характеристике к мягкой стали. Из нитей изготавливают стекловату, стекловолокно и стеклоткани. Не трудно догадаться об областях использования этих материалов. Стекловата обладает прекрасными тепло- и звукоизоляционными свойствами. Ткани, изготовленные из стеклянного волокна, обладают чрезвычайно высокой химической стойкостью. Поэтому их применяют в химической промышленности в качестве фильтров кислот, щелочей и химически активных газов. Вследствие хорошей огнестойкости стеклоткани применяют для пошива одежды пожарных и электросварщиков, театральных занавесей, драпировок, ковров и т. п. Стеклоткани кроме огнестойкости и хими- [c.59]

    Наибольшее распространение получили перхлорвиниловые волокна, характеризующиеся влагостойкостью и высокой химической стойкостью в кислотах, щелочах, растворах солей. Однако термостойкость волокон невелика (60—70°С). Ацетатные волокна недостаточно стойки к влаге, кислотам и щелочам, но термостойкость их достигает 150°С. Пылеемкость материалов типа ФП (50—100 г/м ) несколько выше, чем асбест-целлюлозных картонов и стекловолокнистых бумаг в одинаковых условиях эксплуатации. [c.151]

    Устойчивость к действию химических реагентов. При кипячении в воде в течение 3 мин. волокно усаживается на 1 "6 и лишь нескольким больше при обработке его паром с давлением 0,7 ати. Стабильность дарлана определяется наличием многочисленных водородных связей, образуемых нитрильными группами химическая стойкость таких волокон, как орлон и дайнел, макромолекулы которых содержат значительное число звеньев акрилонитрила, значительно выше, чем у дарлана, однако следует заметить, что эти волокна, вытянутые в процессе формования, обнаруживают тенденцию усаживаться при запаривании. Поведение же дарлана дает основание предположить, что волокно в процессе формования не подвергалось излишней вытяжке. Это предположение подкрепляется сравнительно низким значением прочности волокна. Химическая стойкость дарлана умеренная высокая в сравнении с натуральными волокнами, низкая в сравнении с дайнелом, териленом, не говоря уж о тефлоне, обладающем наивысшей устойчивостью к действию химических реагентов. В табл. 38 приведены данные устойчивости дарлана к действию серной кислоты и едкого натра (см. стр. 321—322). [c.415]

    Громадное значение в народном хозяйстве имеют природные и синтетические высокомолекулярные органические соединения целлюлоза, химические волокна, пластмассы, каучуки, резина, лаки, клеи, искусственная кожа и мех, пленки и др., обладающие совокупностью замечательных свойств. Они могут быть эластичными или жесткими, твердыми или мягкими, прозрачными или непрозрачными для света и даже сочетать самые неожиданные свойства прочность стали при малой плотности, эластичность с тепло- и звукоизоляцией, химическую стойкость с твердостью и т. п. Подобная универсальность свойств наряду с легкой обрабатываемостью позволяет изготовлять детали и разнообразные конструкции любой формы, величины и окраски. Без синтетических материалов сейчас немыслим дальнейший технический прогресс в самолето-, машиио- и судостроении, радио- и электротехнике, реактивной и атомной промышленности и других областях науки и техники. Из пластмасс можно изготовлять корпуса судов, автомобилей, тракторов, части станков, изоляцию. Применение пластмасс в станкостроении позволяет по-новому решать ряд конструктивных задач. Высокомолекулярные соединения надежно защищают металл, дерево и бетон от коррозии. Использование новых синтетических материалов в дополнение к сельскохозяйственному сырью позволяет значительно увеличить производство тканей, одежды, обуви, меха и различных предметов домашнего и хозяйственного обихода. [c.185]

    Ткани из синтетических волокон отличаются высокой химической стойкостью, причем некоторые из них по ряду показателей (например, по прочности, предельно допустимой температуре эксплуатации, отсутствию набухания) превосходят фильтровальные перегородки из материалов природного происхождения. В качестве синтетических фильтровальных перегородок используют поливинилхлоридные ткани, устойчивые к действию кислот и солей при температуре не выше 60° С и ткани из волокна хлорин (перхлоцви-ниловые ткани), весьма стойкие в кислых и щелочных средах при температуре до 60 С. Успешно применяются также полиамидные ткани, отличающиеся высокой прочностью в сухом и влажном состоянии и устойчивые к действию щелочей и разбавленных кислот. Кроме того, в качестве фильтровальных перегородок получают распространение химически стойкие ткани из других синтетических волокон виньона (сополимеры винилхлорида с ви-инлацетатом или с акрилонитрилом), совидена, или сарана (сополимеры винилхлорида и винилиденхлорида), нитрона, или орлона (полиакрило-нитрил), лавсана, называемого также териленом или дакроном (продукт поликонденсации терефталевой кислоты и этиленгликоля). Некоторые из этих тканей, например нитроновые или лавсановые, отличаются повышенной теплостойкостью. [c.282]

    Материалы для сальниковой набивки (табл. 5.11) должны иметь высокую упругость, физическую стойкость при рабочей температуре, химическую стойкость против действия рабочей сзеды и возможно малый коэффициент трения. В качестве набивочных материалов в основном применяются хлопчатобумажные материалы, пенька, асбестовый шнур, асбест, графит, тальк, стекловолокно и фторопласт. Наиболее часто использу-егся асбест в виде плетеного шнура квадратного или круглого сечения, но могут быть использованы и скатанные шнуры без плетения или чесания волокна (пенька и др.). Наиболее целесообразно применение набивки из заранее приготовленных и отформованных колец. [c.298]

    Химическая стойкость углепластиков позволяет применять их в производстве кислотостойких насосов, уплотнений. Углеродные волокна имеют низкий коэффищ1ент трения. Это дает возможность использовать их в качестве наполнителя для различных связуюших, из которых делают подшипники, прокладки, втулки, шестерни. [c.86]

    Стеклотекстоли т—материал, аналогичный текстолиту, но изготовленный на основе стеклянного волокна. Стеклотекстолит обладает высокой химической стойкостью и поддается обработке на станках. Его применяют для изготовления деталей, работ-зющих при высоких механических нагрузках (мешалки, детали насосов). [c.90]

    Преимуществами КМУП по сравнению со стеклопластиками с дискретными стеклянными волокнами являются повышенные сопротивление удару и химическая стойкость, лучшие антифрикционные характеристики. Они могут быть применены при больших значениях р -У(р — давление прижатия трущейся пары, V — линейная скорость движения). Скорость изнашивания у них ниже по сравнению с неармированными термопластами и наполненными стекловолокном. [c.558]

    Волокно отличается прочностью, химической стойкостью. Применяется для изготовления негниюш,их канатов, шестерен, вкладышей для подшипников, а также чулок, искусственного каракуля и т. д. [c.254]

    Чолипропилен получается из пропилена аналогично полиэтилену. Долгое время считалось, что при полимеризации пропилена можно получать лишь маслообразные продукты. Когда же научились проводить стереоспецифичную полимеризацию пропилена, оказалось, что при этом получается прозрачный материал с температурой размягчения 160—170 С, прочностью на разрыв 260— 400 кг/см , хорошими электроизолирующими свойствами. Полипропилен применяется для изготовления высококачественной электроизоляции, деталей электро- и радиоаппаратуры, труб,деталей машин. Продавливая расплав полипропилена через тонкие отверстия (фильеры), получают нити полипропиленового волокна. Это волокно обладает большой прочностью, химической стойкостью. Его применяют для изготовления канатов, рыболовных сетей, фильтровальных тканей. Применение полипропиленового волокна в текстильной промышленности ограничивается его невосприимчивостью к обычным красителям, одпако уже появились красители, окрашивающие это волокно. [c.329]

    Гидрофильность неогвержденных фенольных смол является тем решающим фактором, который определяет их исиользоваиие для пропитки бумаги и хлопкового волокна, идущих иа изготовление слоистых пластиков электротехнического и декоративного назначения, формованных изделий, фильтровальной бумаги и прокладок для пластин аккумулятора. Обладая низкой молекулярной массой, одноядерные фенолоспирты проникают в капилляры целлюлозных волокон и там отверждаются, тогда как смолы с высокой молекулярной массой обволакивают волокна, в результате чего они приобретают водоотталкивающие свойства. В процесс отверждепия (150—190 °С) между целлюлозой и фенолоспиртами протекают химические реакции, которые способствуют повышению химической стойкости и водонепроницаемости материала [1]. [c.181]

    С каждым годом возрастает производство синтетических полимеров, т. е. высокомолекулярных соединений, получаемых из низкомолекулярных исходных продуктов. Быстро развиваются такие отрасли промышленности, как промышленность пластических масс, синтетических волокон, синтетического каучука, лаков (лакокрасочная промышленность) и клеев, электроизоляционных материалов и др. Промышленность пластических масс располагает в настоящее время большим количеством синтетических полимерных материалов с разнообразными свойствами. Некоторые из них превосходят по химической стойкости золото и платину, сохраняют свои механические свойства при охлаждении до —50 °С и при нагревании до +500 "С. Другие не уступают по прочности металлам, а по твердости приближаются к алмазу. Из синтетических полимеров получают исключительно легкие и прочные строительные материалы, прекрасную электроизоляцию, незаменимые по своим свойствам материалы для химической аппаратуры. Резиновая промышленность располагает теперь материалами, превосходящими по многим показателям натуральный каучук, одни материалы, например, газонепроницаемы, стойки к бензину и маслам, другие не теряют эластических свойств при температуре от —80 до -f300° . Новые синтетические волокна во много раз прочнее природных, из них получаются красивые, несминаемые ткани, прекрасные искусственные меха. Технические ткани из синтетических волокон пригодны для фильтрования кислот и щелочей. [c.19]

    Сополимеры хлористого винила с винилиденхлори-дом СН2 = СС12 отличаются высокой химической стойкостью. Из них делают трубы для кпслото- и щелочепро-водов, детали химического оборудования, синтетическое волокно и много других изделий. [c.387]

    В-третьих, уже в настоящее время созданы синтетические волокна, превосходящие по многим свойствам (прочности, эластичности, химической стойкости и др.) натуральные волокна. Так, например, из некоторых синтетических волокон производят немнущуюся одежду, безразмерные чулки и белье, исключительно прочную одежду красивой расцветки и многое другое. Применение корда из химических волокон резко увеличивает срок службы автомобильных покрышек. Синтетические волокна не подвержены гниению, поэтому они служат незаменимым материалом для производства рыболовных сетей, канатов и др. [c.409]

    При изготовлении волокна. хлорин перхлорвинило-вую смолу для получения прядильной массы растворяют в ацетоне и формуют волокно мокрым способом. Волокно хлорин не поглощает влаги, обладает высокой химической стойкостью, прочностью и хорошими диэлектрическими свойствами серьезным недостатком его является низкая тепло- и светостойкость. Применяется в основном для технических целей (фильтровальные ткани, ленты для транспортеров и др.), а также для изготовления так называемого медицинского белья. Белье, изготовленное из хлорина, являющегося диэлектриком, при трении о кожу вызывает образование довольно больших электростатических зарядов. В ряде случаев это облегчает самочувствие больных, страдающих ревматизмом, радикулитом и другими болезнями. [c.420]

    Асбестовое волокно применяется для получения фрпкциопиых материалов. Оно также повышает диэлектрические свойства, химическую стойкость и теплостойкость материалов. [c.267]

    Осн. св-ва М. близки к св-вам обычных комплексных нитей (см. Волокна химические, а также табл.). Для полиамидных М, характерны высокие прочность, устойчивость к истиранию и знакопеременным деформациям, прочность в узле и петле, достаточная атмосферостойкость, однако они имеют невысокий. модуль упругости, нестойки к действию щелочен и г-т, М, из полиэтилентерефталата, наряду с высокой прочностью, обладают повышенными модулем упругости и износостойкостью они более гидрофобны, чем полиамидные М., имеют высокую био- и атмосферостойкость. Полиолефиновые М. имеют высокие прочность, устойчивость к знакопеременным деформациям, гидрофоб ность, хим. стойкость, однако обладают низкими атмос феро- и износостойкостью. М, из СВХ гидрофобны, износо стойки для них характерны высокие электроизоляц. св-ва, однако сравнительно невысокие прочность и устойчивость к знакопеременным деформациям. [c.135]

    К фильтровальным тканям 1 редъявляются следующие требования химическая стойкость по отношению к компонентам фильтрующих газов механическая прочность сохранение фильтровальных свойств при нагревании, увеличении влажности и дополнительных нагрузок высокая пылеемкость и воздухопроницаемость легкость удаления пыли при регенерации ткани низкая стоимость. Используются натуральные и химические материалы натуральные — хлопок, лен, шерсть, шелк химические - тефлон, полифен и др. Натуральные волокна по механическим свойствам, химической стойкости и термостойкости уступают синтетическим. Кроме того, применение натуральных волокон для технических целей ограничено ввиду их дефицитности. [c.218]

    По химической стойкости по.чиэтиленоные волокна превосхо дят все известные в настоящее время волокна, уступая лишь фтор содержащим и кремнийорг аническим волокнам. [c.425]

    В объемных нетканых фильтрующих матах из синтетических волокон с упорядоченной структурой в качестве связующих используются поливинилацетатные эмульсии или латексы, а также термопластовые порошки или специальные волокна с более низкой температурой плавления. Гидрофоб-ность, высокая химическая стойкость, возможность промывки или регенерации другими методами, простота применения материалов способствуют их широкому применению. [c.158]

    Фильтры с тканевой перегородкой применяют, еслп необходимо использовать твердую фазу, отделяемую на фильтре, и более полно использовать жидкую фазу. При выборе материала тканей необходимо учитывать их химическую стойкость в фильтруемой среде. Грубошерстные сукна применяют для фильтрации кислых жидкостей при температуре не более 50° хлопчатобумажные ткани (бязь, бельтинг п др.) для фильтрации слабокпслых, слабощелочных и нейтральных жидкостей. При фильтрации крепких минеральных кислот нагретых и холодных используют ткани из асбестового волокна, хлорвиниловые и др. [c.487]

    Особое значение имеет применение перхлорвинила для изготовления волокна Хлорил , обладающего высокой химической стойкостью, гидро-фобностью и негорючестью (ГОСТ 10215—72). [c.170]

    Асбесты — минералы из группы серпентина (горный лен) и амфибола (лучистый камень, горная пробка), обладающие способностью расщепляться на тончайшие волокна. Они встречаются обычно в горах вулканического происхождения. По химическому составу асбесты — водные силикаты магния (хризотил-асбесты) либо железа, кальция и иногда натрия (амфибол-асбесты).. Толщина волокон асбеста доходит до долей микрона, длина — до 50 мм. Асбест применяется для фильтрования более полувека, он отличается хорошей химической стойкостью. Кис-лотостойкость амфибол-асбеста выше, чем у значительно более распространенного хризотил-асбеста. [c.177]


Смотреть страницы где упоминается термин Волокнит, химическая стойкость: [c.53]    [c.176]    [c.365]    [c.2249]    [c.66]    [c.106]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.222 , c.233 , c.235 ]




ПОИСК





Смотрите так же термины и статьи:

Акриловые волокна химическая стойкость

Волокна химические

Полибензимидазольные волокна химическая и радиационная стойкость

Свойства химических волокон радиационная стойкость

Стойкость к действию света и светопогоды (атмосферостойкость) химических волокон

Стойкость нитей и волокна к действию химических реагенто

Химическая стойкость альгинатных волокон низкая

Химическая стойкость антикоррозионных волокон

Химическая стойкость ацетатного волокна

Химическая стойкость волокон

Химическая стойкость волокон

Химическая стойкость волокон биохимическая стойкость

Химическая стойкость волокон из поливинилхлорида

Химическая стойкость волокон к воде и водяному пару

Химическая стойкость казеинового волокна

Химическая стойкость стекла и стеклянного волокна

Химическая стойкость стеклянного волокна

Химическая стойкость триацетатного волокна

Химическая стойкость углеродных волокон

Химические и природные волокна Физико-механические свойства. Стойкость



© 2025 chem21.info Реклама на сайте