Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфолипиды во внутриклеточных

    К внутриклеточной системе мессенджеров относят также производные фосфолипидов мембран эукариотических клеток, в частности фосфорилированные производные фосфатидилинозитола. Эти производные освобождаются в ответ на гормональный сигнал (например, от вазопрессина или тиротропина) под действием специфической мембраносвязанной фосфо-липазы С. В результате последовательных реакций образуются два потенциальных вторичных мессенджера—диацилглицерол и инозитол-1,4,5-три-фосфат. [c.296]


    Полярные липиды, такие, как фосфолипиды и галактолипиды, как правило, образуют совместно с соединенными с ними белками липопротеиновые мембраны, которые окружают клетки или разграничивают внутриклеточные органеллы (рис. 7.1). [c.287]

    Адаптивные механизмы, позволяющие ферментам и органическим субстратам не перегружать внутриклеточный раствор, как правило, неприменимы в отношении неорганических ионов. Хотя значительная часть таких ионов связана с другими компонентами клетки (например, двухвалентные ионы могут связываться нуклеиновыми кислотами, фосфолипидами мембран. [c.121]

    Лецитин и другие фосфолипиды в водной фазе образуют двойной слой из обращенных наружу фосфорилхолиновых или других аналогично построенных фрагментов и направленных друг к другу гидрофобных областей (рис. 87). Такой слой получил название фосфолипидной мембраны. Фосфолипидные мембраны являются важнейшим структурным элементом живой материи —они отделяют содержимое клетки от окружающей водной фазы, ядро от цитоплазмы, создают многочисленные внутриклеточные перегородки. [c.314]

    Биологические ф нкции Л. В полной мере биол. роль Л еще не выяснена Нейтральные Л. (жиры) предс1авляюг собой форму депонирования метаболич. энергии. Фосфолипиды, гликолипиды и стерины-структурные компоненты мембран биологических, оказывают влияние на множество мембранных процессов, в т. ч. на транспорт ионов и метаболитов, активность мембраносвязанных ферментов, межклеточные взаимод. и рецепцию. Нек-рые гликолипиды-рецепторы или корецепторы гормонов, токсинов, вирусов и др. Фосфатидилинозиты участвуют в передаче биол. сигналов. Эйкозаноиды-высокоактивные внутриклеточные регуляторы, межклеточные медиаторы и иммуномодуляторы, участвующие в развитии защитных р-ций и воспалит, процессов. [c.600]

    Установлено, что липиды нормальных тканей и опухолей не отличаются по качественному составу, т. е. не существует липидов, специфичных для опухоли, как полагали ранее. Однако отмечено существенное различие во внутриклеточном распределении фосфолипидов в опухолевых и нормальных тканях. В субклеточных фракциях опухолей нарушается специфическое распределение фосфолипидов, характерное для нормальных тканей их состав выравнивается и становится близким к фосфолипидному составу клетки в целом, т. е. происходит дедифференцировка мембран. Причиной ее, по-видимому, является нарушение биосинтеза лиоидов и, возможно, связанные с ним изменения скоростей обмена отдельными фосфолипидами между мембранными структурами. Кроме того, наблюдается появление фосфолипидов с необычным распределением жирных кислот. Со структурой биологических мембран и, следовательно, косвенно с присутствующими в них липидами связывают действие анестетиков, лекарственных препаратов. Однако неизвестно, выполняют ли липиды при этом пассивную или активную роль. [c.382]


    Таким образом, представленные данные о вторичных мессенджерах свидетельствуют о том, что каждой из этих систем посредников гормонального эффекта соответствует определенный класс протеинкиназ, хотя нельзя исключить возможности существования тесной связи между этими системами. Активность протеинкиназ типа А регулируется цАМФ, протеинкиназы G-цГМФ Са -кальмодулинзависимые протеинкиназы находятся под контролем внутриклеточной [Са ], а протеинкиназа типа С регулируется диацилглицеролом в синергизме со свободным Са и кислыми фосфолипидами. Повышение уровня какого-либо вторичного мессенджера приводит к активации соответствующего класса протеинкиназ и последующему фосфорилированию их белковых субстратов. В результате меняется не только активность, но и регуляторные и каталитические свойства многих ферментных систем клетки ионных каналов, внутриклеточных структурных элементов и генетического аппарата. [c.297]

    Общий структурный фрагмент всех фосфолипидов — моноэфир фосфорной кислоты глицеро-З-фосфат (рис. 2.1), образующийся в результате восстановления продукта гликолиза дигидрокси-ацетонфосфата внутриклеточным ферментом NAD-зависимой глицеро-З-фосфатдегидрогеназой (рис. 2.2). [c.38]

    Наиболее полно охарактеризованы два основных пути передачи информации в клетке, которые различаются природой и свойствами вторичных мессенджеров. В аденилатциклазном пути в качестве внутриклеточного посредника выступает циклический аденозинмонофосфат. В фосфоинозитидном пути действует группа мессенджеров ионы кальция и образующиеся из мембранных фосфолипидов инозитолтрифосфат и диацилглицерол. [c.71]

    Полярные головки , в которых положительно заряженные аммонийподобные группы связаны с отрицательно заряженными ортофосфатными группами, представляют собой цвиттер-ионы, имеют большие электрические дипольные моменты и поэтому хорошо смачиваются водой. В клеточной мембране они обращены в сторону внешней или внутриклеточной водной среды. Не-смачиваемые водой (гидрофобные) углеводородные цепи фосфолипидов удерживают друг друга внутри слоя (рис. 19.8). Такая двухслойная конструкция мембран образуется самопроизвольно. Значительная толщина углеводородного среднего слоя создает необходимую клеткам непроницаемость мембран по отношению к случайным молекулам, способным нарушить работу механизмов клетки. [c.416]

    Цитоплазматическая мембрана (ЦПМ). Цитоплазма каждой клетки окружена мембраной, которая отграничивает клетку от клетки и от окружающей среды. Клетки эукариот имеют, кроме того, многочисленные внутриклеточные мембраны, которые отделяют внутренний объем органелл, обеспечивающих специализированные метаболические функции. Бактерии и археи обычно лищены внутрицитоплазматических мембран (исключением являются метанотрофы, фототрофы и нитрифицирующие бактерии) и содержат только ЦПМ, которая состоит из простых фосфолипидов, образующих мембранный бислой, куда погружены многочисленные белки. Этот бислой обладает свойством избирательной проницаемости, препятствуя свободному продвижению большинства веществ внутрь клетки и из нее. В матрикс ЦПМ заключены также некоторые мембранные белки, имеющие ряд важных функций, включая преобразование и запасание метаболической энергии, регуляцию поглощения и выброса всех питательных веществ [c.29]

    Инозит — шестиатомный циклический спирт циклогексана. Биологической активностью обладает только один оптически неактивный изомер инозита — мезоинозит. Авитаминоз у человека не описан. Инозит действует как липотропный агент вместе с холином, участвует в биосинтезе фосфатидной кислоты и фосфатидилинозитолов. Последние являются вторичными внутриклеточными посредниками в действии ряда гормонов (способствуют освобождению Са ). Инозитол необходим для биосинтеза фосфолипидов мозга, а в комплексе с токоферолом, возможно, для запасания креатина в мышцах. Дрожжи, молоко, орехи и фрукты — лучшие источники инозитола. Гиповитаминоз (у животных) задержка роста, выпадение шерсти, нервнотрофические нарушения, нарушения перистальтики кишечника. [c.366]

    Липопротеиды — сложные белки, содержащие липиды (в частности, фосфолипиды), широко распространены в животном и растительном мире. Липопротеидные комплексы входят в состав белков мозга, крови, молока, хлороиластов растений и т. п. Линонротеидную структуру имеют также компоненты внутриклеточных мембран. [c.25]

    Сходная цепь событий происходит при активации соответствующих рецепторов такими гормонами и медиаторами, как вазопрессин и ацетилхолин, только эф-фекторным ферментом является фосфоинозитид —специфическая фосфолипаза С. Ею начинается фосфоинозитидный каскад, так как она образует из мембранного фосфолипида фосфатидилинозит-1,4-бифосфата два продукта 1) диацилглицерин, активирующий протеинкиназу С, и 2) инозит 1,4,5-трифосфат, освобождающий еще один внутриклеточный посредник Са из внутриклеточных депо, который активирует Са -зависимые протеинкиназы. [c.260]


    Оставшийся в мембране DAG активирует протеинкин у С. Для этого необходимы кислый фосфолипид фосфатидилсерин (ФС) и Са . Протеинкиназа С катализирует присоединение фосфата к остаткам серина или треонина неактивного белка, белок активируется, запускается цепь внутриклеточных реакций, и в конечном итоге возникает ответная реакция клетки (Nishizuka, 1984, 1988, 1995). [c.25]

    Внутриклеточная концентращ1я свободной АК очень мала, поэтому лимитирующей стадией биосинтеза эйкозаноидов является освобождение АК из фосфолипидов мембран (Irvine, 1982). В связи с этим, фосфолипаза Аг считается важнейшим ферментом в патофизиологии макрофагов. [c.43]

    Фагоцитирующие клетки (макрофаги, нейтрофилы) отвечают на воздействие разнообразных агонистов, быстро гидролизуя мембранные фосфолипиды, что приводит к генерации большого числа внутриклеточных и экстраклеточных мессенджеров. Одним из наиболее ранних событий, запускаемых в этих клетках при воспалительных реакциях, является активация сигнальных путей с участием фосфоинозитид-специфической фосфолипазы С и фосфолипазы А , что играет ключевую роль в запуске или модуляции хе.мотаксиса, секреции, фагоцитоза, образования супероксидов (Snyderman, L hing, 1992). [c.148]

    Интенсификация процессов гидролиза фосфолипидов в мембранах митохондрий, эритроцитов и других клеток становится возможной также благодаря и тому, что при низкотемпературном воздействии разрушаются природные антиоксидант-ные системы. Установлено, например, что в процессе замораживания митохондрий они теряют эндогенный глутатион, который 51вляется эффективным фактором защиты от процессов перекисного окисления липидов. Появление в составе мембраны пере-кисных группировок приводит к резкому ослаблению связей липидных молекул друг с другом, белками и другими компонентами, повышает вероятность окисления 8Н-групп белков, что существенно модифицирует функционирование ферментов-катализаторов, ионных переносчиков и т. д. Лизосомы, очень чувствительные к воздействию низких температур, в процессе замораживания— отогрева разрушаются, существенно повышая концентрацию в цитоплазме высокоактивных гидролаз, которые оказывают лизирующее действие на внутриклеточные структуры, например ядра, митохондрии и т. д. (табл. 4). [c.27]

    Вторая основная группа состоит из водорастворимых гормонов, которые присоединяются к плазматической мембране клеток-мишеней. Воздействие присоединившихся к поверхности клетки гормонов на внутриклеточные процессы обмена опосредуется промежуточными соединениями, называемыми вторыми посредниками (первый посредник — сам гормон) последние образуются в результате взаимодействия лиганд—рецептор. Концепция второго посредника возникла в результате работ Сазерленда, показавшего, что адреналин связывается с плазматической мембраной эритроцитов голубя и увеличивает внутриклеточную концентрацию с AM Р. В последующих сериях исследований было выявлено, что с АМР опосредует метаболические эффекты многих гормонов. Гормоны, в отношении которых доказан такой механизм действия, составляют группу U.A. Некоторые гормоны используют в качестве внутриклеточного сигнала кальций или метаболиты сложных фосфоинозитидов (или то и другое вместе), хотя первоначально предполагалось, что они действуют через с AM Р. Эти гормоны включены в группу II.Б. Для большой и очень интересной группы II.В внутриклеточный посредник окончательно не установлен. В качестве возможных кандидатов на эту роль для инсулина рассматривали целый ряд соединений сАМР, GMP, Н2О2, кальций, несколько коротких пептидов, фосфолипид, сам инсулин и инсулиновый рецептор, но пока не найдено ни одного, отвечающего необходимым критериям. Может оказать- [c.158]

    Очень много усилий было затрачено на то, чтобы выявить внутриклеточный посредник инсулина. В качестве кандидатов на эту роль рассматривали целый ряд соединений сАМР, сСМР, Н ОСаи сам инсулин. Неоднократно сообщалось об обнаружении в тканевых экстрактах тех или иных медиаторов — производных белков или фосфолипидов, но до сих пор ни один из них не выделен и не охарактеризован. Недавно было обнаружено, что рецептор инсулина обладает собственной тирозинкиназной активностью это вызвало интерес к поиску каскада реакций фосфорилирования, на основе которых можно было бы объяснить механизм действия инсулина. Указан- [c.168]

    Действие этого гормона, стимулирующего превращение холестерола в прегненолон и кортикостерона в 18-гидроксикортикостерон и альдостерон, может быть опосредовано изменениями концентрации внутриклеточного кальция и метаболитов фосфолипидов по механизму, сходному с описанным в гл. 44. Определенную роль может играть и биосинтез простагландинов, судя по тому, что простагландины Е, и Е2 стимулируют высвобождение альдостерона, а Р, и —тормозят в целом это типично для опосредованных простагландинами реакций. Ингибитор биосинтеза простагландинов индомета-цин тормозит как базальное, так и стимулированное ангиотензином II высвобождение альдостерона. [c.213]

    При исследовании внутриклеточного транспорта липидов, так же как и при изучении трансмембранного переноса, используются фосфолипиды, несущие радиоактивную или флуоресцентную метку. Внутри клетки липиды транспортируются двумя независимыми способами в виде везикул или отдельных молекул в комплексе с белками-переносчиками. Как уже отмечалось, биогенез мембран требует переноса липидов от мембран эндоплазматического рети- <улума и аппарата Гольджи к митохондриям, лизосомам, другим мембранным структурам и цитоплазматической мембране. По-видимому, возможен и обратный перенос липидов от органелл к микросомам. [c.174]

    Б. Внутриклеточные медиаторы. Хотя механизм действия инсулина изучается более 60 лет, некоторые важнейшие вопросы, например природа внутриклеточного сигнала, остаются нерешенными, и инсулин в этом отношении не исключение. Внутриклеточные посредники не идентифищ1рованы для очень многих гормонов (табл. 44.1). Множество различных молекул рассматривалось в качестве возможных внутриклеточных вторых посредников или медиаторов. К ним относятся сам инсулин, кальций, циклические нуклеотиды (сАМР, сСМР), Н2О2, пептиды мембранного происхождения, фосфолипиды мембраны, одновалентные катионы и тирозинкиназа (рецептор инсулина). Не одно из предположений не подтвердилось. [c.261]

    Фос( липиды, являющиеся составной частью липидов, также играют важную роль в питании. Входя в состав клеточных оболочек, они играют существенную роль для их проницаемости и обмена веществ между клетками и внутриклеточным пространством. Фосфолипиды пищевых продуктов различаются по химическому состав и биологическому действию. Последнее во многом зависит от природы входящего в их состав аминоспирта. В пищевых продуктах в основном встречаются лецитин, в состав которого входит холин — аминоспирт, а также кефалин, в состав которого входит этаноламин. Лецитин участвует в регулировании холестеринового обмена, предотвращает накопление его в организме, способствует вьшедению холестерина из организма (проявляет так называемое липотропное действие). [c.14]

    Необходимо отметить, что кроме сегрегирующего холестерин проявляет и другое важное влияние на структуру и физические свойства липидного бислоя. Встраивание холестерина в фосфолипидный бислой вызывает как нарушение квазикристал-лической упаковки цепей, так и уменьшение подвижности цепей. Эти эффекты холестерина называют, соответственно, разжижающим и конденсирующим . При температуре, превышающей точку фазового перехода фосфолипида, холестерин уменьшает подвижность углеводородных цепей. При добавлении холестерина площадь молекулы лецитина уменьшается с 0,96 до 0,56 нм . Вот почему высокое содержание холестерина характерно для миелина и плазматических мембран, тогда как внутриклеточные мембраны содержат его в небольших количествах. В плотных миелиновых мембранах фосфолипиды и холестерин содержатся в отношении 1 1, а в менее плотных митохондриальных мембранах это отношение равно 3 1 или 8 1. Этот уплотняющий эффект холестерина максимален в районе цен-фального участка жирнокислотных радикалов и ослабевает в направлении концевых метильных фупп. При температуре ниже точки фазового перехода фосфолипидов холестерин разжижает углеводородную область бислоя. [c.107]

    Протеинкиназа С подвергается аутофосфорилированию в присутствии Са и фосфолипидов. Физиологическое значение этого процесса состоит, вероятно, в повышении активности киназы. Установлена также активация протеинкиназы С офаниченным протеолизом под действием мембраносвязанной Са-активируемой эндогенной протеазы. Полученные фрагменты теряют сродство к мембранам независимо от присутствия Са и диацилглицерина. Такие растворимые фрагменты С-киназы, активность которых не зависит от Са и фосфолипидов, появляются при взаимодействии форболовых эфиров с некоторыми клетками. Ингибиторы Са-зависимых протеиназ (калпайнов) блокируют это действие форболовых эфиров. Очевидно, при стимуляции рецепторов фосфолипазы С увеличение внутриклеточной концентрации ионизированного Са " " под действием инозитолтрифосфата приводит наряду с транслокацией С-киназы на мембраны также к активации мембраносвязанных, Са-стимулируемых протеиназ и появлению независимой от Са " и фосфолипидов активности С-киназы. [c.359]

    Температурная модификация мембран. В процессе низкотем-пературного воздействия в мембранах клеток и внутриклеточных органелл развиваются биохимические реакции (перекисное окисление липидов, активация внутрпмембранных фосфолипаз и лизосомальных гидролаз), снижающие уровень фосфолипидов в-мембранах и модифицирующие реакционно-активные группировки белков. Эти процессы в мембранных структурах клеток [c.26]

    Важная особенность мембраны — асимметрия бислоя, создаваемая за счет действия внутриклеточных ферментов, различий ионного состава цитоплазмы и интерстициальной жидкости, а также особенностей структуры молекул фосфолипидов и асимметричной локализации белков и липидов в бислое. Асимметрия бислоя — это фактор, обеспечивающий создание градиента кривизны, складок, сморщиваний, отшнуровку частей мембраны в виде везикул. [c.31]

    В процессе превращения фосфатидилсерина в фосфатидил-этаноламин в митохондриях, а также при синтезе сфингомиелина с помощью переноса фосфохолиновой группы от фосфатидилхолина к церамиду в плазматической мембране в качестве субстратов используются фосфолипиды, синтезированные ранее в эндоплазматическом ретикулуме. Таким образом, внутриклеточный транспорт липидов — важнейший процесс биогенеза клеточных мембран. [c.172]


Смотреть страницы где упоминается термин Фосфолипиды во внутриклеточных: [c.19]    [c.604]    [c.88]    [c.305]    [c.288]    [c.357]    [c.360]    [c.363]    [c.24]    [c.32]    [c.42]    [c.79]    [c.223]    [c.278]    [c.168]    [c.135]    [c.151]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфолипиды



© 2025 chem21.info Реклама на сайте