Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кольцевая ДНК Комплементарная

    При попадании в клетку кольцевого однонитевого ДНК-генома инициация синтеза комплементарной цепи неизбежно должна проходить на внутренних участках матрицы — концов у молекулы [c.262]

    ДНК, входящая в состав частиц вируса гепатита В,— это молекула, построенная из двух линейных компонентов полноразмерной (—)ни-ти ( 3,2 т. п. н.) с белком, ковалентно присоединенным к 5 -концу, а также сегмента (+)нити (1,7—2,8 т. п. н.). Этот сегмент содержит участки, комплементарные обоим концам (—)нити, и поэтому удерживает вирионную ДНК в кольцевой форме (рис. 163, а). В вирионе имеется вирус-специфическая ДНК-полимераза, способная достраивать (4-)нить до размера полного генома. Геном вируса мозаики цветной капусты крупнее и содержит около 8 т. п. н. это двухнитевая кольцевая молекула, обе цепи которой не непрерывны (рис. 163,6). [c.315]


    Кольцевая замкнутая (КЗ) форма типична для ДНК простейших, а также для цитоплазматической ДНК животных. Большинство вирусных ДНК в ходе заражения клеток проходят стадию КЗ-формы. Эта форма представлена на рис. 7.27. Как легко видеть, каждая из двух комплементарных цепей двойной спирали замкнута, и в результате цепи оказываются зацепленными. В КЗ-форме ДНК возникают топологические ограничения, состоящие в том, что порядок зацепления двух комплементарных цепей строго ограничен. Эти ограничения, конечно, исчезают при разрыве хотя бы одной из цепей. [c.254]

    Чтобы понять, как функционирует векторная система на основе фага X, необходимо рассмотреть молекулярные аспекты литического цикла развития. Инфекционная фаговая частица имеет головку, в которой заключена плотно упакованная ДНК длиной примерно 50 т. п. н., и отросток с отходящими от него тонкими белковыми нитями (фибриллами). Сборка головки и отростка и упаковка ДНК четко скоординированы. ДНК фага - это линейная двухцепочечная молекула длиной 50 т. п. н. с одноцепочечными 5 - хвоста-ми из 12 нуклеотидов. Их называют липкими ( os) концами, поскольку они взаимно комплементарны и могут спариваться друг с другом. После того как фаговая ДНК проходит через отросток и попадает в Е. соИ, os-концы соединяются с образованием кольцевой молекулы. На раннем этапе литического цикла в результате репликации кольцевой молекулы ДНК образуется линейная молекула, состоящая из нескольких сегментов длиной 50 т. п. н. (рис. 4.16, ). Каждый из таких сегментов упаковывается в белковую головку, к последней присоединяется уже собранный отросток и образуется новая фаговая частица (рис. 4.16, . При упаковке молекулы ДНК длиной менее 38 т. п. н. получается неинфекционная фаговая частица, а фрагменты длиной более 52 т. п. н. не умещаются в головку. Сегменты длиной 50 т. п. н. в линейной молекуле ДНК разделены os-сайтами, и именно по этим сайтам разрезается молекула, когда очередной сегмент заполняет головку. Разрезание осуществляет фермент, находящийся у входа в головку. [c.72]

    Для отбора клеток, содержащих рекомбинантную ДНК, используют специальные приемы. Чтобы уменьшить количество кольцевых плазмидных молекул, образующихся ири сшивании фрагментов ДНК-лигазой Т4, рестрицированную плазмидную ДНК обрабатывают щелочной фосфатазой, удаляющей 5 -концевые фосфатные группы. Для отбора трансформированных клеток, содержащих гибридные плазмиды, проводят 1) тестирование на резистентность к определенным антибиотикам или колориметрическую реакцию 2) иммунологические тесты или выявление специфического белка - продукта клонированного гена 3) гибридизацию с зондом, комплементарным како-му-либо участку искомого гена. [c.78]


    Приведенные экспериментальные данные относятся к обычно исследуемой в растворе линейной, незамкнутой ДНК. У вирусов, а также в клетках бактерий на некоторых стадиях их развития обнаруживается кольцевая замкнутая форма ДНК. В такой ДНК, представляющей собой обычную двойную спираль, каждая из комплементарных нитей является непрерывной замкнутой на себя. Поэтому полное число оборотов одной нити относительно другой не может меняться ни при каких изменениях условий, сохраняющих целостность сахаро-фосфатного остова обеих нитей. Проведенные исследования показали, что при комнатной температуре двойная спираль кольцевой ДНК закручена как целое в суперспираль (с плотностью один виток суперспирали на 120—300 пар оснований) противоположного знака, т.е. в левую. При нагревании происходит тепловое расширение кристалла ДНК и уменьшение степени закрученности двойной спирали. Это приводит к уменьшению суперспирализации. При дальнейшем нагревании происходит раскручивание двойной спирали и образование суперспирали того же знака (правой). Иными являются и характеристики плавления кольцевой замкнутой ДНК. Температура плавления такой ДНК приблизительно на 20° выше, чем для линейной молекулы (см. рис. 4.6). Это происходит потому, что расплавленные нити в кольцевой молекуле остаются закрученными относительно друг друга и энтропия расплавленного состояния меньше, чем для линейной молекулы. Кроме того, ширина интервала плавления замкнутой кольцевой ДНК в 2—3 раза больше, чем ширина интервала плавления линейной молекулы. [c.75]

    Последовательность оснований на двух одноцепочечных концах комплементарны друг другу, так что молекула ДНК обладает липкими концами . При нагревании раствора ДНК фага % при 60 °С и последующем медленном охлаждении липкие концы соединяются друг с другом за счет комплементарного спаривания оснований. В результате линейная молекула ДНК превращается в кольцевую. Нагревание таких колец до 70 при последующем быстром охлаждении приводит к плавлению соединенных липких концов и восстановлению линейной структуры молекулы. [c.341]

    В присутствии белков Rep и SSB, а также АТР разрезанная ДНК расплетается (рис. 33.8). Белок Rep обеспечивает функцию геликазы, которая разделяет цепи белок SSB фиксирует их в одноцепочечной форме. Белок А остается ковалентно связанным с 5 -фосфатным концом кроме того, он связан с белком Rep и передвигается по кольцевой молекуле вместе с ним. В результате замещаемая цепь выпетливается из сайта расплетания. Завершение движения по кольцу ведет к освобождению кольцевой комплементарной ( — )-цепи и линейной вирусной (+ )-цепи. [c.426]

    До сих пор никак не учитывался тот факт, что комплементарные цепи ДНК закручены друг вокруг друга в спираль. Между тем это существенно. Большинство молекул ДНК бактерий и некоторые ДНК эукариот являются кольцевыми. Из-за спиральной закручен-носги цепи этих молекул оказываются зацепленными — их невозможно разделить, не порвав хотя бы одну из них. Даже если бы цепи не были зацепленными (т. е. ДНК не была бы кольцевой), при скорости движения репликативной вилки 1000 н. п. в секунду вся непрореплицировавшаяся часть ДНК должна вращаться со ско- [c.59]

    Как будет видно из дальнейшего, особое значение для механизмов репликации линейных молекул ДНК имеет структура их Концевых участков. У линейных ДНК-геномов не бывает невыразительных концов. Соответствующие участки (рис. 134) могут иметь прямые концевые повторы длиной от сотни и более (например, ДНК фага Т7) до тысяч (Т-четные фаги и др.) пар нуклеотидов. При этом если у фага Т7 все геномные молекулы ДНК идентичны, то молекулы ДНК Т-четных фагов существенно различны, даже Когда они образованы в одной клетке, зараженной единственной фаговой частицей геномы Т-четных фагов (и ряда других вирусов) характеризуются так называемыми кольцевыми перестановками. Еще один вариант концевой структуры вирионных ДНК-ДУПлек-сов — липкие (т. е. взаимно комплементарные) однонитевые концы. Длина которых обычно находится между 10 и 20 нуклеотидами (фаги Р2, Р4), но может укорачиваться до одного нуклеотида (герпес-вирусы), если в этом случае вообще позволительно называть такие Концы липкими . [c.261]

    Как уже было сказано, ряд фагов (фХ174, 04, М13 и др.) имеют однонитевой кольцевой геном. Вскоре после попадания такого генома в клетку он превращается в кольцевой ковалентно-непрерывный дуплекс (или, как говорят, в репликативную форму). Эго превращение включает ряд стадий 1) образование затравки 2) элонгацию комплементарной цепи, осуществляе.мую клеточной ДНК-полнмеразой П1 3) удаление РНК-затравки, которое производится, по-видимому, за счет 5 -экзонуклеазной активности клеточной ДНК-полимеразы I 4) достраивание комплементарной цепи 5) лигирование концов комплементарной цепи ДНК-лигазой и 6) внесение сверхспиральных витков в ковалентно-непрерывный дуплекс прн помощи гиразы. Обратим внимание, что все Арменты, обеспечивающие перевод родительского генома в репликативную форму, имеют клеточное происхождение. [c.272]

    Схема Кэрнса, однако, не является основным способом репликации ДНК фага Я. Очень быстро (может быть уже после первого раунда) 0-молекулы превращаются в а-молекулы, т. е. приобретают форму, характерную для участников репликации по схеме разматывающегося рулона. Тем не менее между а-молекулами репликационных систем, использующих классический механизм разматывающегося рулона (например, у фага фХ174), и а-молекулами, образующимися на поздней стадии репликации ДНК фага Я, есть существенные различия. В первом случае 5 -конец хвостовой части молекулы имеет совершенно определенную структуру, так как он возникает в результате внесения разрыва в уникальное место кольцевого дуплекса. В случае же ДНК фага Я а-молекулы могут иметь самые разнообразные концы. При классическом разматывающемся рулоне из дуплекса вытесняется всегда определенная цепь 1(-Ь)цепь у фХ1741, что опять-таки связано с уникальностью разрыва, вносимого в дуплекс. В случае а-молекул ДНК фага Я из дуплекса может вытесняться любая из двух комплементарных цепей. Наконец, ферментативное обеспечение репликации по схеме разматывающегося рулона имеет свои особенности (например, в случае фага фХ174 — потребность в хеликазе Rep), которые не обнаруживаются при поздней репликации генома фага Я (где используется тот же набор ферментов, >гго и на ранней стадии). [c.275]


    Удобно расчленить раунд репликации ДНК на три стадии 1) переход родительского генома в репликативную форму 2) собственно репликация репликативной формы и 3) переход репликативной формы в зрелый дочерний геном. Рассмотрим несколько вирусных систем, у которых синтез ДНК осуществляется при участии двухнитевых кольцевых молекул (рнс, 148), Такие кольца — репликативные формы — могут возникать несколькими способа.ми путем синтеза комплементарной цепи на однонитевой кольцевой матрице (фаг с( Х174), в результате спаривания липких концов, (фаги Р2, Р4), в результате сайт-специфической (фаг Р1) илн общей (фаг Р22) внутримолекулярной peкo.vlбинaцни. между концевыми повторами и т. д. Наконец, в форме двухнитевого кольца [c.280]

    Репликация вироидной РНК происходит в ядре зараженной клетки вероятная схема этого процесса такова (рис. 174). Сначала на кольцевой +)матрице синтезируется комплементарная (—)цепь. Эгот синтез осуществляется клеточным ферментом в качестве одного из кандидатов рассматривают ДНК-зависимую РНК-полимеразу И. Возможно, расширению специфичности этого фермента, обычно использующего двухнитевую ДНК-матрицу, способствует то обстоятельство, чго вироидная РНК содержит необычно высокую (для однонитевых нуклеиновых кислот) долю элементов с вторичной структурой. Синтез идет, вероятно, по модели разматывающегося рулона (см. раздел 1 этой главы), и в результате появляются линейные олигомерные (—)нити. Затем происходит образование линейных олигомерных (+)нитей не ясно, используются ли при этом в качестве матрицы олигомеры (-)нитей или образовавшиеся из них кольцевые молекулы. Далее линейные (+)олигомеры превращаются в кольцевые мономерные молекулы — конечный продукт реплика- [c.330]

    Под действием эндонуклеазы R, Е. oli кольцевые ДНК разрываются в одной точке, в результате образуются линейные нити. Под действием другого фермента - экзонуклеазы (из фага) укорачиваются нити ДНК с иротивоиоложных концов. Далее при иомощи фермента концевой трансферазы наращиваются нити ДНК, причем у одной ДНК новые концы состоят из адениловых (А), у другой-из тимидиловых (Т) остатков. При смещивании молекул концевые остатки А и Т образуют комплементарные пары, замыкая линейные молекулы в кольца. Вначале эти кольца содержат 4 разрыва, которые затем закрываются при участии еще одного фермента - ДНК-лигазы. [c.497]

Рис. 8.4. Олигонуклеотид-направленный мутагенез с использованием ПЦР. Реакцию проводят в двух пробирках, в каждой из которых содержится одинаковая двухцепочечная плазмидная ДНК, но разные наборы праймеров. Праймеры 1 и 3 содержат один неспаривающийся нуклеотид и комплементарны разным цепям плазмидной ДНК. Праймеры 2 и 4 полностью комплементарны соответствующим участкам плазмидной ДНК и тоже гибридизуются с разными цепями. Положение сайтов гибридизации для праймеров каждой пары различается, но их концы стыкуются. В результате ПЦР-амплификации образуются линейные молекулы. По окончании реакции содержимое пробирок смещивают и проводят денатурацию, а затем ренатурацию. В результате кроме двух исходных линейных амплифицированных молекул образуются две кольцевые плазмидные ДНК, каждая с двумя одноцепочечными разрывами. После трансформации кольцевыми молекулами клеток Е. соН разрывы репарируются ферментами клетки-хозяина, и плазмида может реплицироваться независимо. Линейные молекулы ДНК в Е. oli не сохраняются. Рис. 8.4. Олигонуклеотид-направленный мутагенез с использованием ПЦР. <a href="/info/1175737">Реакцию проводят</a> в <a href="/info/1696521">двух</a> пробирках, в каждой из которых содержится одинаковая двухцепочечная плазмидная ДНК, но разные наборы праймеров. Праймеры 1 и 3 содержат один неспаривающийся нуклеотид и комплементарны <a href="/info/1829207">разным цепям</a> плазмидной ДНК. Праймеры 2 и 4 полностью комплементарны соответствующим участкам плазмидной ДНК и тоже гибридизуются с <a href="/info/1829207">разными цепями</a>. Положение сайтов гибридизации для праймеров каждой <a href="/info/1501625">пары различается</a>, но их концы стыкуются. В результате ПЦР-амплификации образуются <a href="/info/301099">линейные молекулы</a>. По окончании <a href="/info/214810">реакции содержимое</a> пробирок смещивают и проводят денатурацию, а затем ренатурацию. В результате кроме <a href="/info/1696521">двух</a> <a href="/info/24470">исходных линейных</a> амплифицированных <a href="/info/512200">молекул образуются</a> две кольцевые плазмидные ДНК, каждая с двумя одноцепочечными разрывами. После трансформации <a href="/info/33116">кольцевыми молекулами</a> клеток Е. соН разрывы <a href="/info/188301">репарируются ферментами</a> <a href="/info/1304812">клетки-хозяина</a>, и плазмида может реплицироваться независимо. <a href="/info/301099">Линейные молекулы</a> ДНК в Е. oli не сохраняются.
    Итак, если мы превратили ДНК в кольцевую замкнутую молекулу, то созданный в ней порядок зацепления двух нитей не может измениться, что бы мы ни делали с молекулой, пока сахаро-фосфатные цепи, образующие хребет каждой из комплементарных цепочек, остаются целыми и невредимыми. Благодаря этому обстоятельству замкнутые кольцевые (зк) ДНК обладают совершенно особыми свойствами, резко отличающими их от линейных молекул. Самое главное заключается в том, что в зкДНК может быть запасена впрок энергия в виде так называемых сверхвитков. [c.90]

    ДНК некоторых вирусов реплицируются в одном направлении по механизму катящегося кольца , вариант которого представлен на рис. 28-5. Вначале одна из двух цепей кольцевой родительской ДНК расщепляется ферментом. Затем к З -концу расщепленной цепи присоединяется несколько новых нуклеотидов. Рост новой цепи на кольцевой матрице осуществляется за счет постепенного вытеснения 5 -концевой части расщепленной цепи из катящейся кольцевой матрицы. По мере роста новой цепи вытесненный 5 -хвост становится линейной матрицей для синтеза новой комплементарной цепи. Этот синтез на линейной матрице продолжается до тех пор, пока не образуется дочерняя цепь ДНК, комплементарная одному обороту кольцевой матрицы. Двухцепочечный хвост отщепляется затем с помощью фермента, и на 5 -конце опять может начинаться процесс репликации. Таким путем с кольцевой матрицы может сходить множество комплементарных копий кольцевой ДНК. Механизм катящегося кольца испол ,зуется в ооцитах в процессе синтеза генов рРНК он позволяет получать большое число копий этих генов, расположенных в тандемной последовательности, что в свою очередь дает возможность синтезировать одновременно много рРНК. Этот механизм необходим ооцитам для того, чтобы производить много рибосом для быстрого синтеза клеточных белков в процессе ускоренно- [c.898]

    В свободных фаговых частицах ДНК присутствует в виде линейной (не кольцевой) двойной спирали (рис. 4.14). Каждая из цепей на одном конце выступает за пределы дуплекса на 12 нуклеотидов. Эти два одноцепочечных конца комплементарны друг другу путем спаривания оснований они могут соединяться друг с другом, поэтому их называют липкими концами. Если поместить такие молекулы ДНК in vitro в раствор, то благодаря взаимодействию между комплементарными основаниями одноцепочечных концов наступает равновесие между ли- [c.149]

    Этот кажущийся парадокс был объяснен Снигелманом [53], установившим, что в опытах in vitro обычно используют фрагментированную ДНК. Он показал, что если препарат репликативной формы ДНК из фага фХ17А очистить очень аккуратно, то он окажется состоящим из целых двухцепочечных колец. Если затем для синтеза РНК использовать такие неповрежденные кольца, образовавшаяся РНК оказывается комплементарной только одной цени, а именно той, которая комплементарна исходной, зрелой , цени двухцепочечной формы. Если же РНК получают с помощью ДНК, находящейся в виде разорванных на части колец, то цепи РНК оказываются комплементарными обеим цепям ДНК. Такой механизм подбора цепей, видимо, является уникальной особенностью кольцевой двухцепочечной ДНК. [c.238]

    Одноцепочечная кольцевая плюс -цепь инфицирующей ДНК фага служит в качестве матрицы для синтеза комплементарной минус -цепи, давая начало двухцепочечной репликативной форме, или РФ. На ранних стадиях заражения РФ реплицируется полуконсервативно и симметрично, в результате чего образуются дочерние молекулы РФ. На поздних стадиях заражения, когда уже присутствуют белковые молекулы фаговых головок, начинается асимметричная репликация молекул РФ. Теперь в качестве матрицы для синтеза дочерней плюс -цепи служит только минус -цепь Р Ф в результате происходит вытеснение старой плюс -цепн из молекулы РФ. Вытесненная плюс -цепь заключается в фаговую головку одной из частиц потомства. [c.276]

    Изучение внутриклеточного размножения фага 0X174 позволило создать следующую картину репликации его генетического материала (фиг. 139) при вхождении в клетку-хозяина одноцепочечная кольцевая молекула ДНК родительского фага, или плюо>-цепь, служит сначала в качестве матрицы для синтеза комплементарной минусу>-цепи, в результате чего образуется двухцепочечная кольцевая РФ-структура. Репликация РФ протекает обычным полуконсервативным способом, в соответствии с моделью Уотсона — Крика, так что число РФ-молекул на зараженную клетку возрастает на ранних стадиях латентного периода. Однако на более поздних стадиях, когда в клетке уже имеется определенный пул субъединиц белка фаговой головки, начинается асимметричный процесс репликации ДНК, когда только минус -цепь РФ-кольца служит в качестве матрицы для синтеза комплементарной плюс -цепи. С ростом новой плюс -цепи старая плюс -цепь вытесняется из РФ н заключается в белковую оболочку, превращаясь, таким образом, в одноцепочечный генетический материал зрелой инфекционной частицы фага 0X174. [c.277]

    Вскоре после того, как Стрезингер предположил наличие в геноме Т-четных фагов циклических перестановок, Томас показал, что и в нукле-тидной последовательности ДНК Т-четных фагов, как и следует из модели, имеются циклические перестановки. Он обнаружил, что после разделения комплементарных цепей линейных молекул ДНК Т-четных фагов в результате плавления они вновь соединяются с образованием кольцевых двойных спиралей (фиг. 145). [c.298]

    Можно грубо подсчитать, какую долю от всего генома фага Т4 составляет минимальное (отличие от нуля) расстояние, найденное Бензером. Как мы видели в гл. XII, длина кольцевой генетической карты фага Т4 равна примерно 1500 единицам, т. е. в 1500 раз превышает расстояние между двумя точками, для которых при стандартном скрещивании фагов комплементарные рекомбинанты появляются с частотой в 1%. Следовательно, две мутации гП, дающие 0,01% г+-рекомбинантов дикого типа, отстоят друг от друга на расстояние в 0,02 единицы, что составляет около [c.307]

    За десять лет изучения структуры, физиологии и генетики фага выяснилось, что этот фаг имеет много общего с Т-четными фагами, отличаясь от них лишь способностью находиться как в инфекционном состоянии, так и в состоянии профага. Частица фага X состоит из заполненной ДНК головки и длинного отростка (фиг. 167). Однако головка фага X содержит молекулу ДНК длиной лишь 50 ООО нуклеотидных пар и, следовательно, несет только одну четверть той информации, которая имеется Б хромосоме Т-четных фагов. Химический состав ДНК фага X близок к составу ДНК, клеток-хозяина Е. соИ. В отличие от ДНК Т-четных фагов в ДНК фага X не содержится необычных гликозилированных остатков оксиметилцитозина. Подобно ДНК Т-четных фагов, ДНК фага X имеет концевую избыточность. Однако у фага X концевая избыточность представляет собой одноцепочные участки из 20 нуклеотидов, комплементарные друг другу (фиг. 168). Этот повтор создает липкие концы , которые обеспечивают превращение линейной молекулы ДНК инфекционной фаговой частицы в кольцевую молекулу ДНК внутриклеточного вегетативного фага. Фермент, который перекусывает кольцевую вегетативную ДНК по двум специфическим межнуклеотидным связям, расположенным в разных полинуклеотидных цепях, восстанавливает линейнук> 22  [c.339]

    На фиг. 187 схематически изображен такой процесс репарации тиминовых димеров за счет иссечения и заполнения брешей, предложенный Сетлоу и П. Говард-Фландерсом. По этой схеме одна или несколько молекул ферм-ента постоянно обегают кольцевой бактериальный геном, выискивая в двойной спирали ДНК наличие структурных нарушений, подобно тому как на железных дорогах испытательные вагоны, двигаясь по путям, проверяют рельсы. Когда такой фермент встречает нарушение двойной спирали, обусловленное тиминовым димером, он вызывает два разрыва в полинуклеотидной цепи. В результате происходит иссечение тиминового димера вместе с несколькими соседними нуклеотидами. Образующаяся брешь заполняется под действием репарнрующей ДНК-полимеразы, которой, возможно, является ДНК-полимераза Корнберга (см. гл. IX). Эта полимераза добавляет нуклеотиды к З -ОН-концу нуклеотида в старой полинуклеотидной цепи и использует в качестве матрицы неповрежденную комплементарную цепь ДНК, в которой в этом участке не произошло образования ультрафиолетового повреждения . Наконец, восстановление двойной спирали ДНК завершается образованием фосфодиэфирной связи между З -ОН-концом последнего нуклеотида, включенного при репарационной репликации, и 5 -ОН-концом нуклеотида на конце старой полинуклеотидной цепн. Эта реакция осуществляется ДНК-лигазой, действие которой показано на фиг. 104. [c.377]


Смотреть страницы где упоминается термин Кольцевая ДНК Комплементарная: [c.261]    [c.253]    [c.602]    [c.261]    [c.275]    [c.61]    [c.498]    [c.108]    [c.82]    [c.89]    [c.897]    [c.985]    [c.152]    [c.58]    [c.30]    [c.396]    [c.467]   
Гены (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кольцевой ток



© 2025 chem21.info Реклама на сайте