Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соматические клетки, генетика

    Картирование десятков тысяч генов представляет собой чрезвычайно трудную задачу, хотя ее и облегчает то, что некоторые гены собраны в группы, так называемые кластеры. Кластеризованное расположение имеют гены глобинов, белков главного комплекса гистосовместимости, иммуноглобулинов. Трудности изучения генетики человека обусловлены тем, что анализируемое потомство малочисленно, поколения сменяются медленно, а подбор пар, естественно, не поддается планированию. Задача картирования человеческого генома оказалась сушественно облегченной благодаря освоению методов работы с соматическими клетками. [c.294]


    Наиболее очевидные успехи генетики соматических клеток связаны с картированием генов человека. Этой теме посвящена основная часть данной главы. Некоторые примеры применения генетики соматических клеток к растительным клеткам приведены в последнем разделе главы. [c.292]

    Во второй части появилась совершенно новая глава 16, посвященная регуляции экспрессии генов эукариот. Она в основном содержит результаты успешных исследований рекомбинантных ДНК. Материал главы, носившей этот номер, обновлен и составляет главу 17 Генетический анализ процессов развития . Новая глава 18 Генетика соматических клеток включает впечатляющие результаты исследований по картированию генома человека. Главы 11 и 12 обновлены с тем, чтобы отразить наше углубившееся понимание эволюции генетического кода и пот токов информации в клетках о главах 13 и 14 уже говорилось выше. [c.8]

    Современной основой профилактики наследственной патологии являются теоретические разработки в области генетики человека и медицины, которые позволили понять 1) молекулярную природу наследственных болезней, механизмы и процессы их развития в пре- и постнатальном периодах 2) закономерности сохранения мутаций (а иногда и распространения) в семьях и популяциях 3) процессы возникновения и становления мутаций в зародышевых и соматических клетках. [c.305]

    Потенциальные приложения этого явления очевидны. Клетки, которым при помощи методов генетики соматических клеток приданы желаемые наследственные признаки, можно использовать для получения целых растений. Так, целые растения были получены из диплоидных [c.329]

    Конверсия генов. Еще один относящийся к обсуждаемому предмету феномен давно известен в экспериментальной генетике под названием генной конверсии [122]. Различные данные, полученные при изучении глобиновых генов, позволяют предполагать наличие такого феномена и в геноме человека (разд. 4.3 см. также рис. 2.97). Генная конверсия есть не что иное, как модификация одного из двух аллелей другим, в результате чего гетерозигота Аа, например, становится гомозиготой АА. Винклер, который впервые обсуждал этот феномен более 50 лет тому назад, допускал физиологическое взаимодействие аллелей. Однако работы на дрожжах показали, что он связан с атипичной рекомбинацией. Данный процесс иллюстрирован на рис. 2.97. Кроссинговер всегда приводит к разрыву последовательности ДНК в сайте перекреста. Обычно разрыв репарируется, для чего последовательность сестринской хроматиды используется как матрица. Таким образом восстанавливается исходная двойная спираль. Однако иногда репарация осуществляется на матрице гомологичной хромосомы. В этом случае наблюдаются отклонения от обычной сегрегации. Генная конверсия имеет место и в соматических тканях, особенно у растений. Возможно, что в этом случае рекомбинационный процесс протекает атипично. Наличие генной конверсии не является неожиданным, поскольку спаривание гомологичных хромосом в соматических клетках и соматический кроссинговер характерны для многих видов [c.144]


    Главное преимущество бактерий для биохимического анализа — это доступность мутантных штаммов в сочетании с коротким временем генерации. Культивируемые клетки животных обладают относительно малым временем генерации по сравнению с самими животными, так что основные попытки были направлены на получение и отбор мутантных животных клеток и их использование при изучении генетики соматических клеток. [c.183]

    После того как в начале нашего века возникла классическая генетика и было показано, что каждая соматическая клетка имеет такой же самый набор хромосом, что и исходная оплодотворенная яйцеклетка, теория Вейсмана была заметно поколеблена. Однако в действительности за все это время не было представлено ни одного достаточно веского довода в пользу того, что внешняя фенотипическая дифференцировка клеток не связана с внутренней генетической дифференцировкой ядер. Наконец, в 50-х годах появилась возможность непосредственной проверки основных положений теории Вейсмана, так как был разработан способ переноса ядра дифференцированной клетки тела земноводных в цитоплазму яйцеклетки того же вида, в которой собственное ядро предварительно инактивировали ультгфиолетовым облучением. [c.513]

    Культура изолированных органов, тканей и клеток растений в настоящее время находит все большее применение в биологических исследованиях. Такие методы, как клональное микроразмножение растений, оздоровление от вирусной инфекции с помощью культуры апикальных меристем, регенерация растений из каллусных культур, находят сейчас практическое применение. Существенную помощь методы культивирования in vitro могут оказать генетикам и селекционерам в получении новых форм растений. Используя гаплоиды, незрелые или нежизнеспособные зародыши гибридов, сомаклональные варианты растений-регенерантов, биотехиологи вместе с селекционерами ускоряют и облегчают селекционный процесс. Более сложная техника манипулирования с клетками растений необходима для получения соматических гибридов слиянием протопластов или для генетической трансформации клеток и растений. [c.232]

    Традиционные методы генетического анализа, разработанные Менделем, основаны на переходе из диплоидного состояния в гаплоидное в процессе мейоза. Восстановление диплоидности происходит при оплодотворении. Изменения плоидности обеспечивают сегрегацию генов, то есть их распределение в потомстве. Несколько десятилетий назад было показано, что соматические клетки эукариот можно размножать in vitro, т.е. поддерживать в виде так называемых клеточных культур (рис. 18.1). У этих культивируемых in vitro клеток в норме не происходит смены диплоидной и гаплоидной фаз. Тем не менее существуют различные способы, позволяющие изучать определенные генетические феномены на культурах клеток. Существенным преимуществом клеточных культур является то, что возникновение новой клеточной генерации занимает несколько часов, тогда как появление нового поколения на уровне целой особи-это месяцы или годы. Дополнительное преимущество для изучения генетики человека-это возможность комбинировать наследственные детерминанты клеток в культуре, поскольку проведение направленных скрещиваний между людьми, естественно, невозможно. Недавно были разработаны способы получения гибридных клеток, содержащих наследственную информацию различных видов организма, например человека и мыши. Такие гибриды нельзя получить другими способами, т.е. на уровне целых организмов. [c.290]

    Методы генетики соматических клеток растений имеют много важных приложений, поскольку растительные клетки в культуре в отличие от клеток животных обладают очень важным свойством-из одной растительной клетки можно получить целое растение. У животных линия клеток, которые затем образуют гаметы, отделяется от соматических клеток на ранних этапах индивидуального развития особи. По мере этого развития соматические клетки специализируются, при этом они теряют способность при делении восстановить целую особь. У растений генеративные клетки не существуют в виде отдельной клеточной суб-по-пуляции цветок формируется из неспециализированных соматических клеток. Тотипотентность растительных клеток, выращенных в культуре, была впервые показана в 1958 г. Одиночная клетка моркови при пролиферации давала массу недифференцированных клеток, так называемый каллус, которые на среде, содержащей растительные гормоны, подвергались дифференцировке, образуя корни и стебель. На стебле формировались цветы и затем семена. Из этих семян затем вырастали нормальные растения. [c.329]

    Тканевые различия в индукции мутаций. Третья экстраполяция-эго экстраполяция с одной ткани на другую. Хромосомные мутации, например, можно легко проанализировать в костном мозге мышей или китайских хомячков или в культурах лимфоцитов человека. Было бы заманчиво провести экстраполяцию с этих соматических клеток на половые клетки. Однако опыт, полученный в радиационной генетике, показал, что чувствительность половых клеток может очень отличаться от чувствительности других клеток (разд. 5.2.1.3). Для практических целей не так важно, обусловлены ли эти различия клеточным отбором или действительными различиями в индукции мутаций. Кроме того, у обоих полов отмечена неодинаковая чувствительность на разных стадиях развития половых клеток. По всем этим причинам проверка на мутагенность в соматических клетках не может дать информации, необходимой для вычисления оценок генетического риска. Однако методы цитогенетического тестирования m vivo очень ценны для получения оценок риска возникновения соматических мутаций, особенно тех из них, которые, возможно, приводят к раку. [c.269]


    А между тем учение о наследовании приобретенных признаков составляет теоретическую основу представлений Дарвина о механизмах наследственности, которые он в отличие от Ламарка рискнул изложить. Суть их (гипотеза пангенезиса) заключается в следующем. Половые клетки, из которых развивается новый организм, образуются в результате жизнедеятельности материнского организма. При этом от каждой части тела, от каждой соматической клетки отделяются специальные частички-—геммулы, которые переносятся в половые клетки. Поэтому в половой клетке представлены все особенности тела данного организма. Изменения того или иного органа под влиянием внешних стимулов немедленно отражаются на геммулах и через них на половых клетках. Каждая единица тела, —писал Дарвин,— отделяет от себя свободные геммулы, которые распределены во всей системе и при соответствующих условиях способны развиваться в такие же единицы... При вариациях, вызва-нных прямым действием изменившихся условий, новые условия прямо влияют на некоторые части тела и, следовательно, эти части отделяют от себя измененные геммулы, которые передаются потомству . Ясно, что такая точка зрения не выдерживала критики, а потому совершенно не устраивала зарождавшуюся генетику. Между тем гипотеза пангенезиса составляет неотъемлемую и существенную часть дарвинизма, о чем теперь забывают. Генетики создали прямо противоположную концепцию наследственности, в самых общих чертах сформулированную еще Августом Вейсманом, одним из крупнейших [c.389]

    Какпаков В. T., Шуппе H. Г. Соматические клетки дрозофилы в культуре как модель для исследований по молекулярной генетике высших организмов // Молекулярные механизмы генетических процессов. М., 1982. С. 37—48. [c.249]

    Соматические клетки - это клетки всех органов и тканей организма за исключением половых клеток. Усовершенствование методов культивирования соматических клеток вне организма определило возможность новых путей изучения генетики высших организмов, применяя наряду с методами классической генетики методы молекулярной биологии. Это послужило предпосылкой для возникновения нового раздела генетики - сначала генетики соматических клеток, а затем, с развитием методов генной инженерии, и молекулярной генетики соматических клеток. Специфические особенности соматических клеток позволяют успешно эксплантировать из организма различные типы клеток и поддерживать их в культуре в течение длительного времени в специально разработанных питательных средах, включающих наборы аминокислот, витаминов, сахаров, а также сыворотки крови, содержащей различные ростовые факторы. Наибольшее развитие получила молекулярная генетика соматических клеток млекопитающих, что, безусловно, связано с появившейся возможностью постановки прямых экспериментов с клетками человека. В настоящее время разработаны специальные методы культивирования различных клеток человека (фибробластов, глиальных и эндотелиальных клеток, клеток крови и др.) при сохранении нормального кариотипа и других признаков нормальных клеток в течение длительных сроков культивирования. Такие диплоидные штаммы используются для различных экспериментов, в частности, при приготовлении противовирусных вакцин. [c.249]

    Генетические механизмы превращения нормальной клетки в злокачественную не могли не вызвать самого пристального внимания ученых, работающих в области генетики соматических клеток, поскольку именно соматические клетки организма являются мишенью малигнизации. Уже в самых первых работах при слиянии клеток, характеризующихся разной степенью злокачественности, или злокачественных и нормальных клеток, исследовали проявление признаков трансформированного фенотипа. (Barski, 1960 1961). Первоначальные выводы о доминировании признаков злокачественности были вскоре опровергнуты и было установлено, что у т ибридов доминирует нормальный фенотип (Harris et al., 1969). [c.255]

    Последняя цитадель гипотезы ненаследования приобретенных признаков — это первичная структура ДНК генеративных клеток, считающаяся полностью изолированной от изменений в соматических клетках. Однако и здесь ее позиции резко ослабляются из-за последних открытий молекулярной биологии, которые показывают, сколь много мы еще не знаем. Например, несколько месяцев назад был полностью секвенирован геном человека и открыто, что реальное число генов существенно меньше, чем предполагалось еще за год до этого. Разительное несовпадение только что выявленных фактов и существующей теории говорит о том, что многие фундаментальные вещи в биологии и генетике человека мы себе еще даже и не представляем. Можно только догадываться какие открытия, какая ломка прежде незыблемых представлений ждут нас в будущем. Вспомним, даже на нашей памяти многие открытия молекулярной биологии вначале объявлялись абсурдом, а затем их авторам присуждали Нобелевские премии. Так было с явлениями перемещения генов в геноме и обратной транскрипции. А между тем именно эти открытия позволяют предположить возможный путь наследования приобретенных признаков и на уровне первичной структуры ДНК синтез информационной РНК на мутантной ДНК соматических клеток — обратная транскрипция ДНК — встраивание ретротранскрипта в ДНК генеративной клетки. [c.6]

    Вскоре Вейсман уточнил этот постулат и положил его в основу своей теории двух плазм, согласно которой половые клетки образуют особую субстанцию (ее он, вслед за Нэгели, назвал идиоплазмой), недоступную внешним влияниям ( барьер Вейсмана ), тогда как остальные клетки организма (соматонлазма) формируются из половых и не могут передавать свои изменения потомкам. Теория легла в основу неодарвинизма, но была позже отвергнута генетиками, когда выяснилось, что соматические клетки обычно содержат ту же информацию в своих хромосомах, что и половые. В 1930-х годах теорию двух плазм отвергло и большинство эмбриологов, в том числе Вентребер. Но простые решения редко бывают окончательными. [c.205]

    Усиленно разрабатывается генетика соматических клеток. Мутагенез и гибридизация все более и более эффективно используются в генетике соматических клеток человека. Вызвавшая много толков работа Харриса [17], в которой описывалось получение гибридных клеток в результате слияния соматических клеток человека и мыши, была подтверждена Раддль [18] сообщил, что, используя подобную гибридизацию, ему удалось обнаружить в этих клетках эффект сцепления. [c.8]

    Существенное преимущество растений по сравнению с животными, важное для генетики соматических клеток, заключается в том, что гаплоидные клетки растений можно культивировать in vitro. В процессе онтогенеза всех растений происходит смена гаплоидных и диплоидных фаз. У мхов и печеночников доминирует гаплоидная фаза. Эта фаза, называемая гаметофитом, сохраняется и у высщих растений, хотя у них она сильно редуцирована. В процессе мейоза образуются мужские и женские клетки, которые проходят несколько митотических делений. Диплоидность восстанавливается при оплодотворении. Клетки гаплоидной фазы можно поддерживать в культуре. В такой культуре клеток легко тестировать проявление рецессивных маркеров подобно тому, как это делается при работе с ауксотрофными маркерами бактерий. При использовании соответствующих селективных сред можно проводить скрининг больщих популяций клеток, подбирая условия, при которых способность к пролиферации сохраняют только нужные мутанты. [c.329]

    Трансфекция. В генетике соматических клеток синоним трансформации, т. е. включение генетического материала до-норного организма в хромосому реци-пиентной клетки. В генетике бактерий-инфекция клеток фаговой ДНК. [c.316]

    Помимо привычных методов гибридизации современный селекционер может воспользоваться для улучшения растительных культур методами молекулярной генетики. К их числу относятся введение в растительную клетку новой генетической информации с помощью плазмид, отбор новых типов из изолированных протопластов и соматическая гибридизация протопластов. Человек выращивает для своих нужд лишь небольшое число растений, а между тем существует множество еще неизученных растений, которые можно было бы широко использовать. К числу наиболее многообещающих видов относятся гваюла, дающая каучук, хохоба, дающая воск и масло, ЕсЫпосМоа, выращиваемая на зерно, и спаржевый горох, используемый для получения растительного белка. Новые методы разведения растений с применением тканевых культур и регулируемого воспроизведения могут быть полезны также и в лесоводстве. [c.527]

    Вскоре и биохимические, и цитогенетические методы стали вместе использоваться в генетике соматических клеток. Появилась возможность выявлять специфические дефекты ферментов в отдельных клетках, растущих в культуре ткани. Разработка Генри Харрисом [254] и Эфрусси [247] методов гибридизации клеток человека с мышиными клетками позволила установить локализацию многих генов и построить хромосомные карты человека, которые уже соперничают в своей полноте с аналогичными картами для дрозофилы (разд. 3.4.3) и мыши (приложение 9). [c.32]

    Первые опыты по переносу генетического материала осуществляли с помощью слияния целых клеток [1]. Такая техника нашла применение при изучении процессов дифференци-ровки и канцерогенеза, однако наиболее успешно ее использовали при картировании генов человека [2] и получении моноклональных антител [3]. Известно, что сформировавшийся при слиянии клеток грызуна и человека межвидовой гибрид спонтанно теряет человеческие хромосомы [4]. Как правило, утрата хромосом происходит случайным образом, и это позволяет конструировать гибридные линии клеток, в которых содержатся разные хромосомы человека. Корреляция между присутствием конкретной хромосомы человека и экспрессией генетического маркера является основой для отнесения соответствующего гена к определенной группе сцепления. Из 1300 генов человека, картированных на сегодняшний день, примерно треть локализована на конкретных хромосомах с помощью методов генетики соматических клеток [5]. Процесс утраты хромосом у внутривидовых гибридов происходит не так быстро, как у гибридов межвидовых [6]. При слиянии клеток мышиной мие-ломы с клетками селезенки формируются стабильные линии гибридных клеток. Их характеризует иммортальность (способность к неограниченному делению), унаследованная от миелом- [c.8]

    На противоположном конце спектра работают методы генетики соматических клеток, гибридизация in situ, анализ генетического сцепления их разрешающая способность ограничена 1000—5000 т. п. и. И наконец, середине щкалы соответствуют три метода, позволяющие использовать данные картирования для поиска специфических молекулярных нарушений. Это пульс-электрофорез [6—И], прыжки по хромосоме [3—5] и клонирование в клетках дрожжей [12]. [c.97]

    Потенциальные возможности метода гибридизации клеток огромны. Его применяют не только для изучения проблем биологии развития. Представьте себе, папример, как много этот метод может дать для изучения генетики человека. Можно взять клетки у людей, страдающих генетически обусловленными заболеваниями. Используя метод гибридизации клеток и изучая образующиеся гибридные кдоны, можно определить число различных генов, ответственных за некоторые болезни (болезнь Дауна, гемофилия, галактоземия, диабет и др.), и их локализацию в хромосомах. Таким образом, можно проводить скрещивание у человека, не скрещивая людей. К моменту написания этой книги методом соматической ги ридизации уже идентифицировано 16 генов человека. Есть ли еще более привлекательная область исследования лля молодых ученых, чем эта  [c.229]

    Мутации, затрагивающие ген, кодирующий ГГФРТ, широко 1сп0льзуются в генетике соматических клеток по следующим причи-1ам 1) устойчивые клетки имеют стабильный фенотип и могут быть юлучены практически из любой клеточной линии, включая первич-1ые 2) для селекции устойчивых клеток создана специальная [c.153]

    Анализ функций генов не ограничивается только пассивным сравнением их структур. Функциональный смысл идентифицированной последовательности с характерными особенностями, присущими гену, может анализироваться и путем ее модификации in vitro, введения модифицированного варианта в клетки или в животных и исследования эффекта вариации последовательности на свойства клеток или животных. Современная молекулярная генетика использует для этих целей широкий диапазон методов генетики соматических клеток и трансгеноза, включая создание так называемых нокаутированных животных, у которых направленно удаляется исследуемая последовательность или блокируется ее функция. Наконец, продукт, кодируемый данной последовательностью, может быть получен методами генетической инженерии, и его свойства могут исследоваться стандартными биохимическими приемами и изменяться методами белковой инженерии. Функциональная геномика развивается чрезвычайно быстро, но, поскольку функциональный анализ всегда требует больших временных затрат при меньшей определенности и однозначности результатов, можно предсказать, что [c.6]


Библиография для Соматические клетки, генетика: [c.284]   
Смотреть страницы где упоминается термин Соматические клетки, генетика: [c.272]    [c.172]    [c.9]    [c.9]    [c.261]    [c.206]    [c.251]    [c.240]    [c.207]    [c.33]    [c.11]    [c.171]    [c.11]    [c.11]    [c.55]    [c.148]    [c.153]   
Современная генетика Т.3 (1988) -- [ c.290 , c.291 ]




ПОИСК





Смотрите так же термины и статьи:

Век генетики

Генетика



© 2024 chem21.info Реклама на сайте