Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цирконий методы определения

    Существует много фотометрических методов определения циркония. При проведении реакций необ.ходимо всегда учитывать ионное состояние циркония (IV) в водных растворах, который благодаря высокому заряду и малому ионному радиусу легко гидролизуется и образует полимерные частицы. Для предотвращений этих процессов все реакции проводят в кислой среде. [c.489]


    Титриметрические методы. Среди титриметрических методов определения высоких содержаний циркония главенствующее место принадлежит комплексонометрическому титрованию. Цирконий по сравнению с другими элементами образует наиболее прочное комплексное соединение с комплексоном П1 (lgK—30). Титрование циркония может проводиться в более кислых средах, чем титрование других элементов, в связи с чем метод является достаточно селективным. Для определения содержания циркония используют два варианта комплексонометрического титрования 1) прямое титрование циркония раствором комплексона III в присутствии металлохромного индикатора 2) обратное титрование избытка комплексона III раствором соли другого элемента, образующего устойчивые комплексы с комплексоном III. [c.141]

    Амперометрическое титрование применяют часто для определения анионов. Практическое значение имеет также определение катионов по методу осаждения с применением органических реактивов. Так, раствором купферона титруют титан, цирконий, раствором оксихинолина — кадмий, цинк, алюминий. Известны, кроме того, методы определения катионов посредством титрования раствором комплексона. [c.439]

    Косвенные методы определения металлов. Катионы некоторых металлов, например алюминия, циркония и других, восстанавливаются с большим трудом или не дают четких полярографических волн. В этом случае используют различные косвенные методы, основанные на неодинаковой прочности комплексных соединений металлов. Так, цирконий можно определить следующим образом. К анализируемому раствору циркония прибавляют комплексонат кадмия [c.506]

    Методы определения индия Методы определения циркония Методы определения кадмия Метод определения кальция [c.573]

    При использовании всех спектрофотометрических методов определения циркония решающую роль играет его ионное состояние в водных растворах. [c.223]

    Этот результат характеризует предел обнаружения метода определения циркония. Однако для объективной оценки необходимо учитывать чувствительность реактива НН, который применяют для определения не только циркония, но и элементов с меньшей степенью окисления, образующих соединения МНз или МКг. Иногда необходимо оценить сдвиг полосы поглощения при переходе от НН к MR . Если рассчи тывают значение е исходя из концентрации окрашенного реактива — хромофора К, то [c.320]


    Разработаны экстракционно-фотометрические методы определения марганца в уране и его соединениях, алюминии [198, 1170, 1256], цирконии и его сплавах [684], ультрачистой воде [1255], железе и сталях [244]. [c.66]

    Экстракционно-фотометрическому определению 5,0—Ш мг/мл плутония не мешают и (VI) в концентрациях до 2,5 г/л, ТН, Сг(П1), А1, М , А , Мп и Си в количествах до 5 г/л. Ре(1П) и 2г экстрагируются вместе с плутонием в значительных количествах, причем железо завышает величину оптической плотности, а цирконий занижает ее. Точность определения не ниже 0,5%. Чувствительность этого метода на два порядка выше чувствительности метода определения плутония в растворах трибутилфосфата. [c.164]

    Вследствие незначительной растворимости тетрафторида урана и в особенности двойных фторидов урана-аммония, урана-натрия или урана-калия [173, 275], а также возможности отделения урана от больших количеств циркония, ниобия, тантала, бора, железа, ванадия и других элементов, образующих растворимые фторидные комплексы [275, 991], метод отделения урана (IV) в виде фторидов нашел достаточно широкое применение. Методика осаждения урана (IV) плавиковой кислотой приводится в разделе Весовые методы определения . [c.272]

    Методы определения содержания циркония (гафния) [c.138]

    Фотометрические методы определения содержания циркония предусматривают использование реагентов, взаимодействующих с цирконием в кислых средах арсеназо III, сульфохлорфенол С, ксиленоловый оранжевый. [c.138]

    Из фотометрических методов определения содержания скандия широкое распространение получил метод определения с ксиленоловым оранжевым. Скандий образует прочное комплексное соединение состава 1 1 при pH 1,5— 5,0. Нижний предел определения равен 0,1 мкг/мл небольшие количества редкоземельных элементов определению не мешают ионы железа (III) и церия (IV) восстанавливают аскорбиновой кислотой. Мешают определению скандия торий, галлий, индий, цирконий. Кривые светопоглощения растворов ксиленолового оранжевого и его соединения со скандием показаны на рис. 23. С помощью ксиленолового оранжевого скандий определяют в металлическом магнии и его сплавах, в медных сплавах, в вольфрамите. [c.207]

    Гравиметрические методы. В связи с появлением избирательных фотометрических и комплексонометрических методов определения содержания циркония и гафния гравиметрические методы определения этих элементов утратили свое значение. Однако из гравиметрических методов до сих пор применяют следующие. [c.142]

    Принцип метода. Определение основано на прямом титровании циркония комплексоном П1 в 2 М растворе соляной кислоты в присутствии индикатора ксиленолового оранжевого. Относительное стандартное отклонение результатов определения 0,01 при содержании —98% диоксида циркония. [c.144]

    Принцип метода. Определение содержания циркония основано на измерении суммарной абсорбции комплексов циркония и ниобия в 0,2 М сернокислой среде с ксиленоловым оранжевым по отношению к аликвотной части раствора пробы, содержащей, помимо тех же реактивов, комплексон III, маскирующий только цирконий. Для предотвращения гидролиза ниобия его предварительно связывают в пероксидный комплекс. Метод рассчитан на определение содержания от 1 до 5% циркония. Относительное стандартное отклонение результатов определений 0,10. [c.145]

    Осаждение РЗЭ в виде фторидов используется для их отделения от многих элементов. При осаждении РЗЭ из водного раствора их солей действием раствора фтористоводородной кислоты образуется аморфный слизистый, труднофильтруемый и промываемый осадок. Фторидный метод, как и оксалатный, позволяет отделить РЗЭ от железа, алюминия, титана, циркония, урана (VI), ниобия, тантала и некоторых других элементов. В ходе анализа обычно отделяют все РЗЭ от сопутствующих элементов путем осаждения в виде фторидов с последующего их осаждения в виде гидроксидов или оксалатов. Выделенное суммарное количество РЗЭ анализируют на содержание отдельных РЗЭ, используя, например, фотометрическое определение церия (IV), спектрофотометрические методы определения неодима, празеодима и т. д. (по собственному поглощению их солей), а также спектральное определение отдельных РЗЭ в их сумме. [c.198]

    Наиболее точным методом определения больших количеств меди является электролитический метод (см. стр. 46). Этот метод рекомендуется для анализа проб, содержащих более 3% меди. В растворе после отделения меди можно определять многие элементы, е том числе алюминий, железо, хром, никель и цирконий. Раньше меди выделяются на катоде золото, серебро, ртуть и металлы платиновой группы, что завышает результаты анализа. [c.44]

    Вместе с тем фракционное испарение может служить методом определения более летучих примесей в менее летучей основе. В частности, метод использован для определения бериллия в уране, тории, цирконии и плутонии. Метод фракционного испарения с использованием носителей позволяет почти полностью отделить спектры бериллия от спектра нелетучей основы и достичь высокой чувствительности и точности определения бериллия в уране и других металлах. При пользовании этим методом вполне достаточно применение приборов со средней дисперсией., [c.99]


    В основном этот метод аналогичен методу определения примесей в цирконии (см. стр. 169) он дает возможность определять алюминий, ванадий, вольфрам, железо, кальций, кобальт, кремний, магний, марганец, медь, молибден, никель, ниобий, олово, титан и хром. [c.182]

    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    В одной из рецензий на Анализ титана, циркония и их сплавов авторов критиковали за то, что в книгу был. включен химический метод определения кислорода. Однако в настоящем издании этот метод остался, поскольку он может найти применение в лабораториях, которые еще не оснащены дорогим оборудованием для вакуумной плавки. [c.9]

    Метод, описанный на стр. 177, применяют для определения редкоземельных элементов в цирконии и его сплавах. Метод определения кальция в цирконии, приведенный на стр. 179, является дополнительным к методам, изложенным на стр. 128 и 130. [c.167]

    Бибер и Вечержа [373] и независимо от них Маджумдар и Чоудху-ри [728] предложили весовой метод определения шестивалентного урана осаждением с помощью купферона. Количественное осаждение имеет место при pH в пределах 4—9. Вследствие более высоких значений pH осаждения мешающее влияние других элементов в данном случае оказалось значительно большим, чем при осаждении четырехвалентного урана. Однако теми же авторами [373, 728] было показано, что применение комплексона III позволяет устранить мешающее влияние подавляющего большинства элементов. В этих условиях полностью остаются в растворе щелочные и щелочноземельные элементы, Mg, Ag, Hg, РЬ, Си, Сё, Мп, Zn, Со, Ni, В1, Ре, Ое, 5п, ТЬ, Ьа, Се и редкоземельные элементы. Определению также не мешают небольшие количества титана (IV) и циркония. Мешающее влияние алюминия, сурьмы (III), олова (IV), ниобия и тантала устраняют прибавлением винной кислоты. Присутствие [c.71]

    Воспроизводимость метода аналогична указанной на стр. 172 для спектрографического метода определения примесей в цирконии. [c.182]

    Бор, кадмий, свинец и олово определяют методом, аналогичным методу определения бора, кадмия и свинца в цирконии (см. стр. 175), но следует учитывать, что К Ь. Оз более летуча, чем ХтО . [c.205]

    Фотометрический метод определения циркония (или гафния) в ниобии и ниобиевых сплавах (см. стр. 203) может быть применен для анализа тантала при условии, что цирконий (или гафний) сначала отделяют следующими образом. [c.209]

    Во многих методах определения магния мешают фосфат-ионы, поэтому их предварительно удаляют либо в виде труднорастворимых фосфатов железа или циркония, или же методом ионообменной хроматографии. [c.45]

    Многие методы определения фосфора в природных и промышленных материалах известны давно. Однако в материалах, содержащих такие элементы, как титан, цирконий, ниобий, тантал и вольфрам, определение фосфора представляет трудную задачу, не решенную достаточно удовлетворительно до настоящего времени. [c.5]

    Аналогичная реакция применяется при определении фтора. Ряд методов определения фтора основан на образовании малодиссоциированных фторидов тория или циркония (ТЬР или ZrFJ. В качестве индикатора берут ализарин (натриевая соль ализаринсульфокислоты), который является очень чувствительным реактивом по отношению к торию и цирконию, образуя с ними соединения, окрашенные в красно-фиолетовый цвет. Испытуемый раствор фтористого натрия титруют в слабокислой среде рабочим раствором азотнокислого торня или циркония. Метод применяют, главным образом, для определения малых количеств фтора в природной воде и в различных материалах. [c.427]

    Используя различные методы определения атомных масс элементов, Я. Берцелиус в 1826 г. дал повую систему атомных масс (см. стр. 152). В этой таблице атомные массы большинства металлов оказались очень близкими к современным соответствующие оксиды лшогих из них получили правильную формулу, Вместо прежних формул РеОг, РеОз, СиО и СиОг оп принял формулы FeO, ГегОз, СпгО, СиО, СаО, ВаО, АЬОз, МнгОз, СггОа и др. Однако атомные массы щелочных металлов были установлены неточно, так как для их оксидов Я. Берцелиус принимал такой состав NaO, КО и т. д. В 1841 г. В. Реньо внес коррективы в эти формулы, после чего в системе атомных масс Я. Берцелиуса почти не было принципиальных ошибок. Из 54 элементов, известных к концу жизни шведского химика, неправильными оказались атомные массы серебра, бора, бериллия, кремния, ванадия, циркония, урана, церия, иттрия и тория многие из них были исправлены лишь в результате открытия периодического закона Д. И. Менделеева. [c.136]

    Бьюкенен и сотр. [327] разработали спектрофотометрический метод определения циркония с ализаринсульфонатом натрия в сплавах плутония и урана, применяемых в качестве реакторного горючего. Эти сплавы имели следующий состав 20—40% Ри, 50—75% и, 0,05—4,5% Zr, 1,25-6,0% Мо, 1,25 6,0% Ru, 0,25—0,9%) Rh и 0,7—2,5%) Pd- Цирконий и другие долгоживу-щ ие осколочные элементы накапливаются в сплавах в результате процессов деления и не удаляются полностью при проведении пирометаллургической регенерации горючего. [c.402]

    Другой спектрофотометрический метод определения циркония заключается в отделении циркония от Pu(III) осаждением и-бромоминдальной кислотой и последующем фотометрировании комплекса циркония с хлораниловой кислотой [ЗЮа, 718]. Метод рекомендуется для анализа сплавов с содержанием циркония 0,01—1,0%. [c.403]

    Один из наиболее старых гравиметрических методов определения содержания титана основан на осаждении его аммиаком в виде гидроксида с последующим прокаливанием выделенного осадка до оксида титана Т102. В данном случае определению мешают элементы, осаждаемые аммиаком (например, железо, цирконий, ниобий, тантал и др.), а также фосфор, ванадий, мышьяк. [c.126]

    Соли циркония гасят излучение кальция [496, 648, 897[. В пламени в нитратных растворах образуется соединение состава 1 1 (GaZrOj) в солянокислых растворах предполагается образование соли agZrjO (Са Zr = 3 2) [463]. На содержание циркония можно внести поправку [648]. Особенно эффективно устраняет влияние циркония и гафния оксихинолин. При добавлении его непосредственно в анализируемый раствор можно определять кальций в соединениях циркония и гафния, не прибегая к приемам отделения [462 . Описана отгонка основы в виде хлорида циркония при определении кальция методом пламенной фотометрии [1278]. [c.142]

    В книге описаны методы определения более 30 элементов в титане, цирконии, гафнии и нх сплавах, а также методы анализа ниобия, тантала, вольфрама и сплавов этих металлов. Большое внимание уделяется инструментальным методам анализа — реитгеио-спектральному, спектрографическому, полярографическому, фотометрическому и др. [c.4]

    В книге описан также новый фотометрический метод определения циркония, основанный на экстракции циркония три-н-октилфосфиноксидом с последующим образованием цветного цирконийпирокатехинфиолетового комплекса. Этот метод нашел широкое применение и особенно удобен для определения небольших количеств циркония (ниже 0,002%) в ниобии. [c.8]

    Значительно шире представлены спектральные методы анализа. Так, впервые описаны методы определения кадмия, свинца и бора в цирконии, переработаны и модерни-зиройаны спектральные методы определения других элементов и включены методы прямого спектрального анализа твердых проб. [c.9]

    Количественное определение многочисленных примесей в цирконии возможно спектрографическим методом (см. стр. 169). На стр. 182 онисаи тот же метод применительно к гафнию предполагается прямой анализ твердой пробы (в куске) и эталона подобного состава с известным содержанием примесей. Эти методы проще, требуют меньше времени и более чувствительны, чем спектрографический метод определения примесей в цирконии и гафнии со съемкой спектров предварительно окисленных проб (см. стр. 172, 177, 179, 183). Последний используется в тех случаях, когда невозможно пол учить твердую пробу в компактном виде. В этом методе анализируют эталоны в окисленном состоянии, полученные либо окислением эталонных проб, либо смешением известных навесок окислов металлов. Приготовление эталонов смешением окислов металлов встречает определенные осложнения, в частности при смешении. Необходимо также оценить содержание определяемой примеси в окисной среде, что связано с серьезными трудностями. Следовательно, использование стандарт- [c.166]

    В основном этот метод аналогичен методу определения примесей в цирконии (см. стр. 172) он дает возможнссть определить алюминий, кальций, кремний, магний, никель и титан. [c.183]

    Перекиси или гидроперекиси реагируют с бензоиллейкометиле-новым синим в бензольном растворе трихлоруксусной кислоты с образованием раствора, имеющего характерный цвет метиленового синего. Эйсс и Гиске [4] положили эту реакцию в основу метода определения органических перекисей. Эта реакция чувствительна к ультрафиолетовому излучению и в меньшей степени к искусственному свету и нагреванию, однако если получаемый раствор хранить в темноте при температуре 24 °С, то он сохраняет свою окраску в течение нескольких дней. Для ускорения разложения перекиси, а следовательно, и для увеличения скорости реакции с лейкокрасителем использовали нафтенат циркония. Из пяти перекисей, проанализированных этим методом, закон Бера выполнялся для перекисей бензоила и лауроила, гидроперекисей я-мен-тана и кумила результаты для гидроперекиси трет-бутлг несколько отклонялись от этого закона, и для определения этого [c.187]


Смотреть страницы где упоминается термин Цирконий методы определения: [c.428]    [c.83]    [c.131]    [c.187]    [c.204]    [c.83]    [c.131]   
Аналитическая химия циркония и гафния (1965) -- [ c.0 ]

Фотометрическое определение элементов (1971) -- [ c.470 , c.477 ]

Колориметрические методы определения следов металлов (1964) -- [ c.870 , c.877 ]




ПОИСК







© 2025 chem21.info Реклама на сайте