Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладий методы определения

    Из колориметрических методов определения серебра, по-видимому, наилучшим является дитизоновый , подробно описанный в его нескольких вариантах в руководстве Е. Б. Сендэла Определению серебра этим методом мешают только палладий, золото, ртуть и большие количества меди. [c.240]

    Сплавы палладиево-иридиевые. Метод определения палладия [c.584]


    Химико-спектральный метод определения палладия в ртути [812] основан на растворении навески в азотной кислоте, введении нитрата серебра и выделении палладия соосаждением с цианидом серебра. Палладий в осадке цианида серебра определяют спектральным методом (по линии Pd 3404,58 А), мешает железо. При содержании палладия —10 % стандартное отклонение составляет —18%. Чувствительность метода 5-10- % при навеске 10 г. [c.185]

    Этот простой метод определения палладия проверен на ряде промышленных образцов и дает вполне удовлетворительные результаты. [c.279]

    Чаще всего приходится анализировать сплавы серебра с медью, золотом, палладием, платиной и другими благородными металлами. Содержание серебра в этих сплавах выше, чем в рассмотренных выше чистых металлах, поэтому здесь преобладают титриметрические методы определения. [c.187]

    Иодидный анодный метод определения серебра приложим также при определении серебра и палладия при совместном присут-ствии (см. Палладий ). [c.303]

    Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определения палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.579]

    I Иа абсорбционных методов определения водорода наиболее точен способ поглощения водорода коллоидным раствором палладия. При приготовлении коллоидного раствора палладия в качестве защитногс коллоида к раствору прибавляют натриевую соль протальбиновой кислоты, а в качес.тве поглотителя — пикриновую кислоту. Для этого две части коллоидного палладия и пять частей пикриновой кислоты, нейтрализованной 22 мл раствора едкого натра, разбавляют водой до 100 мл. Эти 100 мл раствора палладия и пикриновой кислоты способны поглотить 4 л водорода. Поглощение происходит с заметной скоростью и заканчинается через 15—20 мин. При поглощении водорода таким раствором происходит восстановление пикриновой кислоты до триамидо-фенола по уравнению  [c.830]

    Сплавы золото-палладиево-платиновые. Метод определения золота, палладия [c.585]

    Предложен фотометрический метод определения ртути с использованием 8-меркаптохинолина, образующего в сильнокислой среде (2—16 N Н2ЗО4 или 2—8 Ж HNOз) с Нд(П) желто-зеленый комплекс [3551. Окраска возникает мгновенно и устойчива 48 час. Чувствительность метода 0,5 мкг мл. Определению мешает только палладий. Метод применен для анализа руд и ртутьорганических соединений. Оптическую плотность измеряют нри 265 нм относительно 1,8 10" Л/раствора 8-меркаптохинолина в 4 Н2804. [c.118]


    В другом методе определения удельной поверхности дисперсных образцов платины [70] и палладия [71, 72] используется взаимодействие между монослоем хемосорбированного кислорода и газообразным водородом. Применяется также и обратная реакция — между хемосорбированным водородом и газообразным кислородом [69, 73]. Эти процессы часто называют титрованием , так как хемосорбированные частицы титруются газообразным реактантом. [c.314]

    Ускорение реакции при определенном содержании палладия на других носителях ранее наблюдалось при гидрогенизации бензола, ацетиленовых спиртов [45] и объяснялось из кинетических данных появлением новой возможности активации водорода за счет его растворения в палладии. Методом термодесорбции водорода нами получено количественное подтверждение этой точки зрения [2, 3]. Показано, что скорость восстановления нитросоединений возрастает при появлении и увеличении содержания в палладии растворенного, а в №-контактах — относительно слабо адсорбированного водорода (десорбируется до 300 ). [c.48]

    В основу фотометрических методов определения палладия при помощи диоксимов положена способность диоксиматов палладия растворяться в органических растворителях. Измерения светопоглощения производят в ультрафиолетовой области. [c.166]

    Приложимость рефрактометрического метода определения конфигурации комплексных соединений ограничивается веществами, существующими в виде только двух изомеров. Метод разработан для комплексных соединений платины, палладия и кобальта, содержащих связи Ме—С1, Ме—NO2 или Ме—NH3. Однако и в пределах указанных групп соединений рефрактометрическим методом надо пользоваться с большой осторожностью, применяя его наряду с другими химическими и физическими методами, так как в случае веществ с сильной оптической анизотропией метод становится ненадежным. [c.99]

    Ионы палладия и платины, как ионы благородных металлов, обладают сильными окислительными свойствами. Так, Р(1 на холоду окисляет СО до двуокиси углерода (чувствительная реакция открытия СО). Из растворов Р1С14 при действии избытка восстановителей выделяется платина. Ионы благородных металлов характеризуются исключительно выраженной способностью к комплексообразованию. Из большого числа комплексных соединений платины в лабораторной практике находит применение, как реактив на ион калия, платинохлористоводородная кислота. Образующийся при этой реакции хлороплатинат калия — малорастворимое вещество, кристаллизующееся в виде микроскопических желтых октаэдров. Этой реакцией пользуются в микрокристаллоскопии — методе определения вещества по форме кристаллов, наблюдаемых в микроскоп. [c.329]

    Для определения 4,3—16,2 мкг/мл Аи предложен полярографи-ческий метод, основанный на прямой пропорциональной зависимости между высотой волны восстановления золота на враш аюш ем-ся платиновом электроде при потенциале +0,6 в (отн. н.к.э.) от концентрации 2-10 —3-10" г-ион/л Аи. Ошибка определения методом добавок и по калибровочному графику составляет 2—3% [50]. Разработан метод определения 0,025—2,50 мг Аи на фоне 1 М НС1 при помощи микродискового электрода. Золото восстанавливается при потенциале электрода +0,60 в. Платина и палладий [c.173]

    Разработан [771, 772] субстехиометрический метод определения золота путем его экстракции диэтилдитиокарбаминатом меди в хлороформе из растворов 0,05—8 N НС1 или Н2804. Не мешают многие ионы, мешают только большие количества палладия. Метод позволяет определять золото с чувствительностью 2-10 1 г с ошибкой Ч 5% в высокочистом свинце и горных породах. [c.189]

    Титан губчатый. Метод определения азота Титан губчатый. Метод определения железа Титан губчатый. Методы определения углерода Титан губчатый. Методы определения хлора Титан губчатый. Методы определения кислорода Титан губчатый. Метод определения алюминия Титан губчатый. Метод определения кремния Титан губчатый. Метод определения ниобия и тантала Титан губчатый. Метод определения меди Титан губчатый. Метод определения циркония Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определеш1я палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.569]

    Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]


    Из табл. 3 видно, что чувствительность метода определения железа роданидами повышается, если реакцию проводить в присутствии ацетона чувствительность метода еще больше повышается, если определение железа проводить смесью трибутиламмоаия и амилового спирта. Проведению реакции мешает ряд веществ. Прежде всего должны отсутствовать анионы ряда кислот, которые дают более прочные комплексные соединения, чем роданид железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также хлориды и сульфаты, присутствующие в значительных количествах. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь, молибден, вольфрам, титан в 3- и 4-,валентном состоянии, ниобий, палладий, кадмий, цинк, ртуть. [c.136]

    Разработаны титриметрические методы определения палладия [115J, основанные на его осаждении названными реагентами и определении органического радйкала в осадке с использованием NH4VO3. [c.149]

    Гросскопфом [31] описан колориметрический метод определения водорода в газах, основанный на образовании воды при взаимодействии с кислородом. Исследуемый газ пропускали через трубку, содержащую последовательно слой гопкалита, предназначенный для поглощения содержащихся в газе паров воды, слой металлического катализатора (платина, палладий или никель), способствующего окислению водорода до воды, и, наконец, керамическую мембрану, пропитанную смесью диоксида селена с моногидратом серной кислоты и активированную парами углеводородов. На присутствие паров воды указывало изменение цвета такой мембраны от исходного желтого до красного. По ширине окрашенной в красный цвет зоны можно определять содержание от О до 5% водорода (или паров воды) при использовании 0,5 л образца исследуемого газа. [c.356]

    Платина, палладий. Кулонометрическое определение этих элементов в обычных водных растворах применяется редко, в то же время благородные металлы являются отличным электродным материалом. Бубернак [133] провел обстоятельное исследование электролитических методов выделения и определения палладия и других металлов платиновой группы. В среде пиридинхлорида палладий (II) подвергается простому двухэлектродному восстановлению- при потенциале —0,3 в [134]. Было показано, что этот процесс восстановления может использоваться для аналитического определения палладия в диапазоне концентраций 0,1—5 ммоль. [c.62]

    Операций по отделению золота и серебра можно избежать, титруя палладий (II) раствором-иодида калия , с которым палладий (II), так же,как и серебро, дает осадки, практически нерастворимые в воде, но сильно отличающиеся по растворимости в аммиаке константы нестойкости аммиачных комплексов палладия и серебра отличаются больше чем на 20 порядков. Отсюда следует, что из аммиачной среды в осадок будет выпадать только иодид серебра (/( ест = 5,89 10 ), а палладий останется в растворе (К нест = 2,5 10 °). Золото (III) не может мешать при этом титровании, равно как не мешают ему и цветные металлы, даже в 100—1000-кратном избытке (см. описание иодидного метода определения серебра в разделе Серебро ) не Ьказывают влияния и ионы платины. [c.279]

    Комплексы с перечисленными основаниями используются для экстракционно-фотометрического определения и разделения многих металлов. Описаны методы определения меди [14, 24—31, 33, 36], железа [13, 14, 20, 44, 50, 56, 58], кобальта [12, 19,20, 42, 45, 47], таллия [48], сурьмы [40], рения [66], палладия [43, 67] и ряда других металлов. Осуществляется разделение ряда платиновых металлов, рения и молибдена [14]. В ряде случаев разделение производится путем создания различной кислотности водной фазы перед экстракцией. Так, кобальт извлекается в виде пиридин-роданидного комплекса при pH около 6, а никель — при pH 4 [34]. Большое значение имеет выбор экстрагента. Так, пиридин-роданидный комплекс палладия хорошо извлекается хлороформом, а рутений в этих условиях не извлекается. Для его экстракции применяют смесь трибутилфосфата и циклогексано-на [35]. 11звестно использование тройных комплексов для открытия ряда анионов, таких как роданид, иодид, бромид, цианат, цианид [36]. [c.115]

    Состав извлекаемых бензолом соединении кобальта с НН, а также с р-нитрозо-а-нафтолом выражается формулой СоКз, где R — остаток нитрозонафтола. Молярный коэффициент погашения комплекса кобальта с а-нптрозо-р-нафтолом в бензоле при 416 ммк равен 30000, а кобальта с р-нитрозо-а-нафтолом при 360 ммк, равен 44000. С помощью а-нитрозо-р-нафтола можно определить кобальт в присутствии 60-кратного количества никеля и 3000-кратного ко.личества железа, а с номощью р-нитро-зо-а-нафтола — в присутствии 400 частей никелеп и 500 частей железа. На основе полученных резу.льтатов разработан экстракционно-фотометрический метод определения кобальта в стали [224—226]. Аналогичный метод применен для определения кобальта в металлическом натрии [227]. Изучены условия экстракционно-фотометрического определения палладия и платины с [c.245]

    Метод основан на различии pH образования пиридинроданида никеля и кобальта. Комплекс никеля экстрагируют хлороформом при pH 4,6, и экстракт фотометрируют при 320 ммк-, комплекс кобальта (после отделения никеля) извлекают гексаном из раствора с pH 5,6. Экстракт фотометрируют при 620 ммк. Пиридинроданид-ный комплекс палладия экстрагируют из слабощелочных растворов различными органичными растворителями. Максимум светопоглощения комплекса в метилизобутилкетоне находится при 395 ммк. Комплекс рутения (1П) извлекают из кислых растворов и экстракт фотометрируют при 570 ммк. На этом основан метод определения палладия и рутения. Аналогичный вариант предложен для определения платины и родия [368]. [c.254]

    Особенностью реагентов и образуемых ими комплексов с элементами является их сравнительно легкая экстрагируемость полярными растворителями, благодаря чему они пригодны для экстракционно-фотометрических схем определения элементов. С пиридилазорезорцином [43—46] описаны методы определения ниобия [35, 47], тантала [35, 36], кобальта [48], палладия [49. Пиридилазонафтол [50] применяется для определения отдельных редкоземельных элементов [51], индия, галлия, урана и ряда других элементов [52]. Есть очень обстоятельный обзор по аналитическому применению пиридиновых азосоединений [53]. [c.128]

    С успехом применять спланление анализируемого материала с десятикратным количеством свинца при 900—1000° С. Избыток свинца и сплавы свинца с платиной, родием и палладием растворяют последовательной обработкой азотной кислотой, а затем разбавленной царской водкой. Иридий не образует сплава со свинцом и не растворяется в царской водке, но он загрязняется рутением, железом и, возможно, осмием, если эти элементы присутствуют в сплаве. Подробный ход выполнения этого исключительно точного разделения приведен в разделе Методы определения (стр. 416). Способ этот применим также к анализу губок, состоящих из платины и иридия. Наличие цинка, который мо г быть введен, например, для выделения платиновых металлов из раствора, приводит к растворению некоторого количества иридия. [c.412]

    Прежде чем перейти к рассмотрению этой большой группы исследований, целесообразно остановиться на одном вопросе, имеющем общее значение. Во всех этих работах принимается представление о сущестьовании на поверхности металлических катализаторов, нри протекании подобных реакций, адсорбированных атомов водорода, обладающих повышенной химической активностью. Выводы о свойствах поверхностного водорода и, в частности, об его активности делаются, одпако, только на основании анализа самих кинетических данных, для объяснения которых и предполагается его существование. Весьма интересным путем проверки этих представлений могло бы стать создание прямых путей измерения каких-либо характеристик этих поверхностных соединений. Первой известной нам попыткой в этом направлении является предложенный Д. В. Сокольским метод определения поверхностной концентрации водорода при жидко-фа.зпом гидрировании посредством измерения электрохимического потенциала поверхности [10]. В нашей лаборатории для исследования поведения атомов водорода на поверхности палладия В. Б. Казанский использовал явление диффузии водорода через палладий [И]. Рассчитав по данным, полученным им при измерении скорости диффузии, скорость процесса рекомбинации [c.37]

    Основные научные работы посвящены неорганической и аналитической химии. Разработал газовый анализ, усоверщенствовал методы весового и объемного анализа. Изобрел перфорированный вращающийся катод. Предложил метод определения окиси углерода с помощью хлорида палладия. Разработал способ определения гидроокиси натрия в присутствии карбонатов щелочных металлов. При исследовании минерала аргироди-та обнаружил (1885) новый эле- [c.106]

    Метод определения углеродного скелета можно осуществлять в различных вариантах. Реакцию гидрогено-лиза, гидрирования или дегидрирования веществ можно провести независимо от его хроматографического определения, используя известные химические методы [6]. Некоторые зарубежные фирмы выпускают специальные микрогидрогенаторы, представляющие собой небольшие автоклавы для цроведения гидрирования в жидкой фазе. Для проведения гидрирования метиловых эфиров ненасыщенных кислот используют суспензию платинового катализатора (Р102). Гидрирование проводят в этанольном растворе в течение 15—30 мин. Па-лимент [7] предложил простую аппаратуру для проведения гидрирования вне хроматографа. Исследуемый образец (в частности, предварительно отобранная при хроматографическом разделении в ловушку целевая фракция) 20—1000 мкг вносят в пробирку (4 смХ Х8 мм), содержащую 0,1 мл метанола и 0,5 мг катализатора (10% палладия на углероде). В пробирку пропускают водород со скоростью один пузырек в 1 с. Поток водорода перемешивает суспензию растворитель-— катализатор, содержащую анализируемое вещество. После окончания гидрирования смесь центрифугируют и аликвотную часть реакционной смеси отбирают для газохроматографического анализа. Для получения (выделения) чистых соединений эффективны методы улавливания фракций после разделения на насадочных [8] и капиллярных [9] колонках. Этот вариант исследования структуры вещества является, по-видимому, наиболее надежным, хотя и более длительным. [c.121]

    Кроме описанных выше, имеется еще много других фотометрических методов определения йода. а-Нафтолфлавон реагирует с йодом с образованием синего соединения, которое пригодно для спектрофотометрических определений [81]. При взаимодействии йода с гидроксиламином образуется азотистая кислота, которая затем диазотирует сульфаниловую кислоту при последующем сочетании с а-нафтиламином образуется красный краситель [23]. о-Толидин, реагируя с йодом, дает сине-зеленую окраску [55]. Йодид можно определять по реакции с диоксаном [87]. В кислом растворе йодат окисляет пирогаллол до пурпурогаллина с образованием красновато-бурой окраски [103] эта реакция очень чувствительна. Можно использовать уменьшение флуоресценции флуоресцеина, поскольку дийодпроизводное не флуоресцирует [37]. Измерение интенсивности мути от йодида серебра позволяет успешно определять малые количества йодида [95]. Йод определяли также по адсорбции йодида одновалентной ртути на хлориде двухвалентной ртути [44, 77] и по образованию йодида палладия [64]. [c.243]

    Диоксимы, в, частности 1,2-циклогександиондиоксим и а-фурил-диоксим , образующие, подобно диметилглиоксиму, внутрикомплексные ОЛИ с палладием (П), используются в методах определения палладия. Кро1 е того, для определения палладия рекомендуется применять 1,10-фе-нантролин [c.423]

    Среди методов определения микроколичестз платиновых металлов и золота основное место занимают колориметрические и спектрофотометрические или экстракционно-спектрофотометрические методы. Число колориметрических методов для некоторых благородных металлов, например палладия, чрезвычайно велико между тем для определения иридия существует сравнительно небольшое число методов. Чувствительность спектрофотометрических методов достигает 0,01 мкг/мл, за редким исключением 0,001 мкг/мл. Большая часть методов основана на возникновении окраски комплексных соединений платиновых металлов с органическими реагентами (реже применяются неорганические реагенты) и на использовании собственной окраски таких комплексных соединений, как хлориды, бромиды, иодиды. Для спектрофотометрического определения платиновых металлов и золота применяют все классы органиче ских реагентов,, перечисленные в главе П. Во многих случаях химизм реакции и состав образующихся окрашенных продуктов неизвестны. Многие реагенты не избирательны, поэтому методы определения одного металла в присутствии другого основаны либо на нахождении различия в условиях образования окрашенных соединений (температура, pH раствора), либо на использовании некоторого различия в спектрах поглощения соединений двух металлов с одним и тем же реагентом, т. е. определении оптической плотности в разных областях спектра, либо на различной экстрагируемости окрашенных соединений органическими растворителями. [c.158]

    Известны методы определения платины и палладия в одном и том же растворе при помощи Ы,М -б с-3-диметиламинпропил-дитиооксамида [192], бензилдитиооксамида [193] и хлористого олова [191], основанные на определении оптической плотности раствора в двух областях спектра. [c.159]

    Определение палладия в виде [Pd U] при помощи платинового электрода [341]. Ион [Pd U] - восстанавливается на платиновом электроде, образуя волну, пропорциональную концентрации палладия. Определению не мешает родий, но мешают золото, иридий и рутений. В присутствии платины образуется суммар ная волна платины и палладия. Метод рекомендуется для определения от 5 10 до 2 10 М палладия. Точность, определения 3,0 %. [c.194]

    Самый чувствительный метод определения родия-ооцилло-графический [321] — основан на образовании в присутствии родия пика в анодной части кривой, возникающего благодаря каталитическому восстановлению ионов водорода. Метод рекомендуется для определения от 0,025 до 1,0 мкг КЬ/льг в присутствии 2000—3000-кратного избытка платины, палладия и золота. [c.195]

    Г. Л. Безбородко предложил метод определения аценафтилена в присутствии аценафтена гидрированием над платиновой чернью или палладием при обыкновенной температуре. Ошибка метода [c.56]


Смотреть страницы где упоминается термин Палладий методы определения: [c.8]    [c.113]    [c.24]    [c.143]    [c.153]    [c.738]    [c.139]    [c.164]    [c.219]    [c.77]   
Фотометрическое определение элементов (1971) -- [ c.300 , c.304 ]

Колориметрические методы определения следов металлов (1964) -- [ c.642 , c.645 ]




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий палладий



© 2025 chem21.info Реклама на сайте