Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определение олова в металлах и сплавах

    Принцип метода.Весовой метод определения олова заключается в получении нерастворимой -оловянной кислоты. При растворении металла или сплава в азотной кислоте происходит реакция [c.172]

    Вольтамперометрический метод применяют для определения многих металлов. Кадмий, кобальт, медь, свинец, марганец, никель, олово, цинк, железо, висмут, уран, ванадий и многие другие могут быть определены в рудах, концентратах, сплавах и иных природных и технических объектах. При достаточно различающихся потенциалах полуволны (Д /, > 0,10 В) возможно количественное определение нескольких элементов без предварительного разделения. Например, в аммиачном буферном растворе можно полярографировать смесь кадмия ( = 0,81В) и никеля ( /,= — 1,10 В). Существенное практическое значение имеет вольтамперометрическое определение хромат-, иодат-, мо-либдат-ионов и некоторых других, а также многих органических соединений альдегидов, кетонов, азо- и нитросоединений и т. д. Широко используют полярографический метод для анализа биологически важных материалов крови, сыворотки и т. д. [c.236]


    Методы определение олова в металлах и сплавах [c.365]

    Из цветных сплавов важное значение имеют сплавы меди (латуни, бронзы). Определение главных составных частей этих сплавов также было описано в предыдущих параграфах. Медь и свинец чаще всего определяют электролитически, как указано в 55 и 56. Для определения олова обычно пользуются йодометрическим методом, подробно описанным ниже. Подготовка сплава меди к определению олова состоит в растворении навески в смеси азотной и соляной кислот и отделении олова от меди двукратным осаждением гидроокисью аммония в присутствии хлорного железа (коллектор). Осадок гидроокисей железа и олова (и др.) растворяют затем в соляной кислоте, восстанавливают четырехвалентное олово до двухвалентного каким-нибудь металлом (железом, свинцом или др.) и титруют рабочим раствором йода. [c.456]

    Пробирный анализ —самый распространенный метод, применяемый лри определении благородных металлов в рудах и продуктах металлургического передела (4, 6—12]. Этот метод позволяет брать для анализа большие навески (1до2 г] и относительно легко и быстро отделять небольшие количества платиновых металлов и золота от породы и примесей. Метод основа на плавке исследуемых материалов в тиглях из огнеупорной глины с сухими реактивами, содержащими металл— коллектор благородных металлов и флюсы, состав которых меняется в зависимости от состава исходного материала. В качестве коллекторов золота, платины и палладия используютчаще всего сви- нец и серебро [12—16]. Коллектирование родия, иридия, рутения и осмия свинцом и серебром представляет значительно ббльшие трудности [10, 17—22], так как эти металлы легко образуют устойчивые при высокой температуре окислы (а рутений и осмий—летучие окислы), а также соли, многие из которых разлагаются только при высокой температуре. Однако родий и иридий довольно легко образуют сплавы с платиной и палладием, что облегчает их сплавление со свинцом и удерживание в сплаве с серебром [13], Для концентрирования платиновых металлов применяют также плавки навесок бедных материалов с ферроникелем [23—30], медью [31, 32] и оловом [33]. [c.251]

    Спектральный метод определения примесей различных металлов (железа, магния, алюминия, висмута, олова, титана, кальция, сурьмы и свинца) в кремнемедном сплаве, применяющемся в качестве катализатора прямого синтеза кремнийорганических соединений, основан на сожжении анализируемой про- [c.377]


    Свободные металлы. Разработаны методы хроматографирования свободных металлов при сверхвысоких тысячеградусных температурах. Например, удалось осуществить прямое газохроматографическое определение цинка, кадмия и магния в сплавах типа припоев и легких сплавах на основе олова, свинца и висмута без химической обработки. Разделены цинк, кадмий и ртуть в виде паров этих металлов. Металлические калий и натрий разделить в виде паров пока не удалось они элюируются вместе при 600— 1000°С. В будущем прямое газохроматографическое разделение металлов может быть использовано при очистке металлов и их сплавов от ультрамалых количеств примесей. [c.65]

    Осаждение гидроокиси магния избытком едкого натра в присутствии алюминия, олова, цинка и других амфотерных металлов более пригодно для повышения концентрации магния в растворе, чем для отделения его от этих металлов, поскольку они соосаждаются вместе с гидроокисью магния. Метод отделения магния от таких металлов, как железо, марганец, медь, цинк, свинец и никель, основан на осаждении гидроокиси магния едким натром в присутствии тартрата или цианида, которые предотвращают осаждение указанных металлов . Этот метод выделения магния был применен для определения его в сплавах алюминия. Для отделения магния от больших количеств титана применяют осаждение магния в виде гидроокиси из растворов, содержащих перекись водорода . [c.528]

    Методы определения малых количеств олова, цинка, свинца и висмута с применением анионитов являются универсальными и могут быть использованы при анализе цветных металлов и их сплавов, сырых материалов, простых и легированных сталей, жаропрочных сплавов на никелевой, железной, кобальтовой, хромовой основах, а методы определения малых количеств железа, меди и кобальта, а также молибдена с применением анионита — при анализе жаропрочных сплавов на никелевой основе и ряда чистых металлов. [c.288]

    Определение кальция в амфотерных металлах, их соединениях п сплавах. Метод [126] позволяет определять (2—4) 10" % Са в А1, Sn, Сг, Zn, бронзе, латуни, баббите и (1—2,5)-10 % Са в солях алюминия, свинца, цинка, олова, хрома и бериллия. [c.199]

    Как пример применения роданидного метода (в его различных вариантах) можно указать на определение железа в галлии [2, 14а], олове [18], алюминии [25], никеле и его солях [36, 37], сплавах урана [35], солях меди, кобальта, кадмия и цинка [23], гидроокисях щелочных металлов [13]. [c.165]

    Разрабатывая методы определения олова, Капачо-Дельгадо и Маннинг [236] определяли его в различных сортах латунн NBS и в сплаве свинца. Несмотря на то, что в пламени воздух — водород достигалась большая чувствительность использовали пламя воздух — ацетилен, так как в нем удобнее было контролировать помехи. Для получения благоприятного соотношения сигнал — шум и высокой чувствительности рекомендуется применять линию 2246 А, излучаемую лампой с полым катодом, покрытым расплавом олова. Эталонные растворы нужно уравнивать с исследуемыми по содержанию НС1 и основного металла. [c.180]

    Перманганатометрическим титрованием определяют Sb в белом металле [1304]. Биамперометрическим титрованием с применепием КВгОд в качестве титранта определяют Sb в свинцово-оловяпно-сурьмянистых сплавах [944]. Амперометрическое титрование с использованием амилдимеркаптотиопирона в качестве титранта применено для определения Sb в свинцово-оловянных сплавах [697]. Разработан ряд экстракционно-фотометрических методов определения Sb в олове и свинцово-оловянных сплавах, в том числе с применением родамина С ( 1-10 % Sb) [995], иодидным и тиомочевинным методами (> 1-10 % Sb) [512]. Для определения Sb в олове рекомендован ряд методов инверсионной вольтамперометрии как без отделения Sb > 5-10 % (Sr = 0,10 -н 0,15) [221, 224], так и с отделением ее экстракцией этилацетатом [507] или диизопропиловым эфиром [222, 225], а также отгонкой Sn в виде SnBr4 [507]. Нижняя граница определяемых содержаний Sb этими методами достигает 7-10- —1-10 % Sr= 0,15 0,25). [c.143]

    Различные варианты кулономегрического анализа используются для решения разнообразных частных задач аналитической химии, в том числе технического анализа. Известен ряд модификаций метода определения влаги, основанного не на применении реактива Фишера, а на количественном электрохимическом разложении воды, поглош,аемой различными сорбентами [289, 469— 474, 598—601]. Кроме того, описаны методы определения непредельных соединений путем гидрирования их электрогенерированным водородом [602—605], что можно с успехом применить для решения специфических задач органического синтеза. Разрабо таны также способы определения газообразных кислорода, водорода и других газов [606—612]. С помощью кулонометрии давно уже определяют толщину металлических покрытий [53, 613— 622], а также анализируют коррозионные и окисные пленки на различных металлах и сплавах, в том числе на олове [623—627], алюминии [628], меди [629—633], железе (сталях) [634] и других металлах [635]. [c.70]


    Мухина 3. С. Определение примесей в металлическом магнии высокой чистоты. Полярографический метод. [Определение железа, меди, свинца и цинка]. Тр. ЛЬ 117 (М-во авиац. пром-сти. СССР). [М Оборонгиз, 1949, с. 10—11. 4860 Мухина 3. С. Определение олова в алюмн-11иевых сплавах и других металлах. Зав. лаб,, 1950, 16, ЛГ 5, , 546—548, 4861 Мухина 3. С. Анализ ванны анодирования. [c.189]

    Платиновые держатели для проб нельзя использовать при сожжении ртути, висмута, железа, свинца и сурьмы. Такие держатели применяют прн разложении соединений кальция, бария, меди, марганца, кобальта и никеля, так как в условиях сожжения пробы эти металлы не образуют с платиной сплавов [5.603]. Отмечаются трудности при растворении оксидов алюминия, меди, галлия и никеля, которые образуются при сожжении органических материалов, если при сожжении развиваются высокие температуры [5.600, 5.603]. Метод не пригоден при определении олова, так как образуется нерастворимый SnOj [5.604]. [c.167]

    Для других богатых свинцом сплавов, как, например, для типографского металла, баббита, содержащей и не содержащей сурьмы дроби, ход анализа выбирается в зависимости от определяемого металла. Например, если наряду со свинцом присутствует лишь олово, его определяют следующим образом. 1 г измельченного сплава нагревают до полного разложения в 20 мл азотной кислоты (плотн. 1,2), затем выпаривают, добавляют небольшое количество разбавленной азотной кислоты и снова выпаривают до тех пор, пока остаток не станет совершенно сухим. Затем доводят до кипения со 100 мл воды, отфильтровывают оловянную кислоту, которая содержит немного свинца, прокаливают ее и взвешивают. Взвешенное содержимое тигля сплавляют с содой и серой, плав выщелачивают водой, отфильтровывают нерастворимый сернистый свинец, известным образом переводят его в сернокислый и определяют отдельно. Сернокислый свинец пересчитывают на окись свинца и вычитают последнюю из взвешенной нечистой оловянной кислоты. Определение сурьмы в сплаве, содержащем сурьму, можно производить методом, описанным при гартблее. Определение мышьяка в дроби, не содержащей сурьмы, производят следующим образом. 2 г зерен дроби растворяют в разба-18ленной азотной кислоте, выпаривают с серной кислотой до появления белых паров, остаток от выпаривания извлекают разбавленной соляной кислотой и, прибавив немного сернокислой закиси железа для разрушения азэтной кислоты, если таковая еще окажется, перегоняют с сернокислым гидразином и бромистым натрием. Затем мышьяк можно определить известным способом—либо посредством титрования иодом, либо в виде грехсернистого мышьяка. [c.321]

    Экстракция с помощью NaDD была применена для определения меди в никеле [549, 824], растворах солей никеля, кобальта и других металлов [481, 795], кадмии 359, 521, 615], цинке [359, 521, 1189], олове [411], титане и цирконии [1132], тантале [387 , селене и селениде кадмия [995, 1363[, теллуре [714], хро.ме [1139] и сурьме высокой чистоты [811] и других металлах [798, 1431]. Этот метод был использован также для определения меди в сплавах [647], рудах [795], едких щелочах [470, 1409], щелочных металлах высокой чистоты [117], поваренной соли [1537], иодиде натрия [1219], воде [469, 718, 1014], почвах [171], красном фосфоре [1469], растениях [303] и других биологических материалах [515]. [c.235]

    Для отделения мышьяка от железа и стали японские ученые [17] применили экстракцию хлороформом в виде АзС1з из солянокислого раствора. Этот метод был использован [18] при определении малых количеств мышьяка в цветных металлах, сплавах и соляной кислоте, а также для определения мышьяка в меди и медных сплавах [19]. При отделении Аз, 5Ь, В1 в работе [20] использовали бензол и бензольный раствор пирокатехина. При этом экстракцию проводили из 2— 10 М раствора соляной кислоты. Авторы показали, что при концентрации раствора соляной кислоты больше 8 М мышьяк полностью извлекался бензолом. Экстракцию мышьяка бензолом применяли, кроме того, при определении его в чугуне и углеродистых сталях [21], олове [22], а также при определении следовых количеств мышьяка в асбестовых отходах [23]. Авторы [24], определяя мышьяк в руде, применяли экстракцию Аз (III) из 12 н. раствора соляной кислоты при помощи четыреххлористого углерода. При определении Ы0 5% примеси мышьяка в хлористом германии (IV) и окиси германия (IV) Аз отделяли экстракцией из четыреххлористого германия в солянокислую среду с добавкой небольшого количества брома [25]. Для определения 5-10 % мышьяка в четыреххлористом германии разработан способ экстракции из последнего мышьяка в солянокислую среду, содержащую добавку азотной кислоты [26]. [c.185]

    Недеструктивный активационный метод применяется для определения ЗЬ в алюминии [841, 1688] и его сплавах [945], нитриде алюминия [421], аскорбиновой кислоте [1630], асфальте [982], висмуте [830, 1204, 1239] и его сплавах с сурьмой [48, 313], воздушной пыли [884, 13131, галените [21], германии [633, 1384, 1385], горных породах [230, 427, 541, 949, 1061, 1289], графите [106, 1207], железе, чугуне и стали [135, 884, 1128, 1129, 1556, 1652], индии [12711, карбиде кремния [468], кремнии [212, 762, 932, 950, 989, 1217, 1361], тетрахлориде кремния [1462] и эпитаксиальных слоях кремния [580], меди [1002], морских [642, 1427] и природных водах [4, 1040], нефти и нефтепродуктах [991, 1517], олове [1305], поли-фенолах [983], почвах [1528], растительных материалах [1316, 1528], рудах [466, 1270], свинце [835 -837, 1205, 1505, 1506], стандартных образцах металлов [1316], теллуре [5], титане [68], хроматографической бумаге [1409], циркалое [1099], эммитерных сплавах [625], трифенилах [8771 и фториде лития [331]. Благодаря высокой чувствительности и вследствие того, что для анализа, как правило, требуется небольшое количество анализируемого материала, эти методы часто используются в криминалистической практике [884, 892, 12961. Имеются указания [965] аб использова- [c.74]

    Полярографический метод применяют для определения небольших количеств висмута, а также и других металлов, в медрг, цинке и цинковых сплавах, свинце, олове, свинцово--оловянистых припоях и, наконец, в минеральных водах, [c.301]

    Метод капельного анализа дает возможность идентифицировать титан и его сплавы, содержащие олово, марганец, ванадий, медь и молибден. Способы непосредственного определения алюминия не найдены, но тройные сплавы, содержащие алюминий, легче идентифицировать по положительной реакции с другими металлами, сопутствующими алюминию, например с оловом в титаналюминий-оловянных сплавах и ванадием в титаналюминийванадиевых спла- [c.116]

    Метод дуги постоянного тока использован для определения галлия в различных породах и минералах [81, 87, 174, 429, 666, 823, 873, 883, 974, 977, 1113, 1114, 1151, 1183, 1192, 1319, 1418], глинах [907, 1183], в почвах [1013], в бокситах [989, 1183], в рудах и продуктах их обогащения [56, 429, 1113, 1114, 1151, 1418], в отходах цветной металлургии [56], в ZnS [885], в золах и сланцах [1184], в огнеупорах [1183], в водах i[1325], в органичесиих соединениях [400], в HF, HNO3 и НС1 [105], в цинк-селенидных электролюминофорах [515], в сплаве In—Ga [1147], в боре (борный ангидрид, борная кислота) [75], графите [850, 929], кремнии [106, 107, 427, 1134] и его соединениях [106, 107, 397, 1134], в германии (108, 336, 336а] и его соединениях [108], в индии [88, 381], цинке [555], олове [557, 559, 560], сурьме [466], бериллии и его окиси [242], селене [506], щелочных металлах [542] и уране [730]. [c.158]

    Медь, цинк, олово, свинец, а также большинство других составляющих, присутствующих в небольших количествах в сплавах цветных металлов, определяют атомно-абсорбционным методом, хотя результаты публикуются довольно редко. Сплавы на основе меди анализировали на содержание цинка [53], свинца [319] и марганца [31]. Саттур [160] определял в таких сплавах марганец, никель и железо, а кроме того медь, присутствующую в качестве основного элемента в различных материалах NBS, и незначительные примеси меди в олове, цинке, алюминии и свинце. Погрешность при определении основного элемента методом атомной абсорбции составляла всего 0,7% от общего количества меди. [c.179]

    Картунен и Эванс [632] применяли хлорид олова(П) дляоп-ределения родия в сплавах урана с неблагородными металлами— продуктами расщепления урана. Родий предварительно отделяли экстракцией и обрабатывали при помощи катионообменной смолы. Методы выделения родия из продуктов расщепления и определение его при концентрации порядка 1 мкг/мл при помощи хлорида олова(II) обсуждали Ченелли, Осмонд и Перри [633]. [c.192]

    При применении метода термографии для определения теплопроводности твердых тел большое значение имеет хороший контакт между блоком и исследуемым веществом, поскольку даже самая ничтожная прослойка воздуха, являющегося одним из худших проводников тепла, может исказить получаемые данные. В этом случае для веществ, которые обладают большим температурным коэффициентом сжатия и не могут быть отлиты без появления воздушной прослойки, следует применить блок из жидкого металла (например олово, сплав Вуда). Тогда будет исключена воздушная прослойка и обеспечено выравнивание температур вокруг образца. Разумеется, расплавленный металл помещается в соответствующий тигель из фарфора, шамота, графита или в шамотный блок. [c.53]

    Внутренний электролиз целесообразно применять для отделения примесей от основного компонента при анализе металлов, руд и солей, как, например, при определении висмута, меди и серебра в свинце и припоях висмута—в свинцовых рудах кадмия, меди и никеля—в цинковых рудах и цинке свинца—в рвотном камне С4Н4К(ЗЬО)Ов меди—в железе, стали или кадмии меди и олова—в алюминиевых сплавах и, наконец, для отделения ртути от других металлов при анализе латуни и бронзы з. В некоторых случаях определение может быть произведено непосредственным взвешиванием электрода, но обычно после электролиза анализ заканчивают, пользуясь методами, соответствующими техническим условиям. [c.155]


Смотреть страницы где упоминается термин Методы определение олова в металлах и сплавах: [c.260]    [c.161]    [c.291]    [c.448]    [c.173]    [c.677]    [c.168]    [c.133]    [c.72]   
Смотреть главы в:

Новый справочник химика и технолога Аналитическая химия Часть 3 -> Методы определение олова в металлах и сплавах




ПОИСК





Смотрите так же термины и статьи:

Металлы олово

Металлы определение методом ААС

Металлы сплавы

Олово в металлах и сплавах

Олово определение

Олово сплавы

Олово, определение в сплавах

Сплавы и металлы металлов



© 2024 chem21.info Реклама на сайте