Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорорганические углеводороды, ток

Рис. 15. Прибор для определения хлорорганических углеводородов Рис. 15. Прибор для <a href="/info/472519">определения хлорорганических</a> углеводородов

    РАСТВОРИТЕЛИ — химические соединения или смеси, способные растворять различные вещества. К неорганическим Р. относятся вода, аммиак (жидкий), кислоты, растворы щелочей и др. В зависимости ОТ химической природы, органические Р. можно разделить на группы углеводороды (бензол, толуол, ксилолы) хлорорганические соединения (хлороформ, четыреххлористый углерод, хлорбензол, дихлорэтан) спирты (метиловый, этиловый, изопропиловый, бутиловый)  [c.209]

    Прибор для сжигания хлорорганических углеводородов [c.82]

    ОЧИСТКА ОТХОДЯЩИХ ГАЗОВ ОТ ХЛОРОРГАНИЧЕСКИХ УГЛЕВОДОРОДОВ АБСОРБЦИЕЙ [c.211]

    При выборе менее огнеопасного растворителя учитывать, что взрывные концентрации паров в воздухе создаются тем легче, чем ниже его температура кипения. В ряде случаев огнеопасные растворители могут быть заменены негорючими растворителями. К ним относятся, например, хлорорганические углеводороды (см. приложение V и VI). [c.116]

    Некоторые авторы [143,144] считают рыб хорошим индикатором зафязнения водных экосистем. Так, анализ содержания ДДТ в балтийской салаке показал, что хлорированные углеводороды прочно вошли в состав всех звеньев экосистемы Балтийского моря, хотя в отличие от Северного моря такие токсичные пестициды, как альдрин и дильдрин, в организмах рыб обнаружены не были. Несмотря на то, что концентрация ХОП в морской воде в последнее время стабилизировалась, а содержание ДДТ даже уменьшилось, обнаружение в рыбах высоких концентраций хлорорганических соединений свидетельствует об их концентрировании в биоте. [c.83]

    Равновесие сдвигается в сторону диссоциации при добавлении растворителей карбамида или углеводородов и повышении температуры [1—4, 16, 27]. Низкомолекулярные -парафины образуют менее стабильный комплекс, чем высокомолекулярные, однако скорость образования комплекса для них выше. Комплекс образуется в присутствии так называемых активаторов, к числу которых относятся вода, низшие спирты, кетоны, некоторые хлорорганические соединения, а также насыщенные водные или спиртовые растворы карбамида. Существует несколько мнений о механизме действия активаторов в процессе комплексообразования с карбамидом. По данным [3], роль активаторов заключается в удалении неуглеводородных примесей с поверхности кристаллов карбамида, что дает возможность молекулам углеводородов проникать в эти кристаллы. Высказано предположение [29], что сначала структура кристаллов карбамида преобразуется из тетрагональной в гексагональную, а действие растворителей карбамида заключается в осаждении его в тонкоизмельченном виде, что обеспечивает мгновенное образование комплекса с углеводородами. [c.203]


    Определению не мешают метиленхлорид, тетрахлорид углерода и другие легколетучие хлорорганические углеводороды, [c.254]

    Фенурон. СдН зО г — К-фенил-К, К -диметилмочевина. Белое кристаллическое вещество с температурой плавления 136° С. Хорошо растворяется в спиртах, кетонах, хлорорганических углеводородах и плохо — в углеводородах, особенно алифатического ряда. В воде растворяется плохо. Получают фенурон взаимо- [c.418]

    В описываемом комплексе хлорорганических производств целесообразно внедрять отпарку соляной кислоты, получаемой в качестве побочного продукта при реакциях хлорирования парафиновых углеводородов с использованием 100%-ного хлористого водорода в производстве хлористого винила. [c.269]

    Процесс каталитического риформирования бензиновых фракций и получения ароматических углеводородов связан с переработкой легковоспламеняющихся жидкостей и взрывоопасных газов при избыточном давлении до 6,0 ЛШа и температуре до 530 °С. Процесс протекает в среде водорода, отдельные ступени процесса связаны с образованием сероводорода и применением хлорорганических соединений и экстрагентов. [c.227]

    В этом процессе вместо пропан-пропиленовой фракции могут быть применены также хлор углеводороды ряда Сд (хлорпропаны, хлорорганические отходы производства окиси пропилена, глицерина, а также дихлорэтан). [c.396]

    Наиболее вероятный механизм действия активаторов [27] заключается в том, что, являясь полярными веществами, они способствуют уменьшению межмолекулярных сил взаимодействия молекул твердых и жидких углеводородов. При этом твердые углеводороды высвобождаются из раствора, что благоприятствует образованию спиралеобразной гексагональной структуры карбамида и, следовательно, комплексообразованию. Эта гипотеза объясняет и тот фа кт, что полярные растворители (иекоторые спирты, кетоны и хлорорганические соединения) в условиях комплексообразования легко растворяют жидкие и не растворяют твердые углеводороды, выполняя одновременно функции растворителя и активатора. [c.203]

    Восстановление органических веществ с образованием радикалов Сильные восстановители Сг Ре , Си переводят хлорорганические соединения в углеводороды [4,8]  [c.45]

    I. МЕТОДЫ ПЕРЕРАБОТКИ НИЗШИХ УГЛЕВОДОРОДОВ В ХЛОРОРГАНИЧЕСКИЕ ПРОДУКТЫ [c.360]

    Ягафарова Г.Г. Разработка биотехнологии очистки воды и почвы от некоторых хлорорганических соединений и углеводородов нефти Диссертация на соискание ученой степени доктора технических наук. - Уфа УГНТУ, 1994. - 258 с. [c.207]

    МЕТОДЫ ПЕРЕРАБОТКИ УГЛЕВОДОРОДОВ Б ХЛОРОРГАНИЧЕСКИЕ ПРОДУКТЫ ЗбЗ [c.363]

    Разработка эффективного метода получения дихлоргидринов, дихлоруглеводородов, окиси пропилена и эпихлоргидрина в электрохимической системе. Исследование фотоэлектрохими-ческого хлорирования углеводородов. Изучение фотохимических превращений сополимеров Отчет / Ин-т хлорорганического синтеза АН АзССР. Рук. темы д. х. и. У. X. Агаев // Химия и хим. пром-сть Сб. реф. НИР и ОКР.- М. ВНТИЦ, 1980.-№ 4. - С. 2. [c.157]

    Огромное количество хлорорганических продуктов, вырабатываемых мировой промышленностью, получается заместительным хлорированием насыщенных и аддитивным хлорированием непредельных углеводородов, гидрохлорированием путем присоединения хлористого водорода к непредельным углеводородам, дегидрохлорированием с образованием непредельных связей путем отщепления хлористого водорода от полихлоридов различных углеводородов, содержащих более одного атома углерода, и хлоргид-ринированием олефинов. [c.360]

    МЕТОДЫ ПЕРЕРАБОТКИ УГЛЕВОДОРОДОВ В ХЛОРОРГАНИЧЕСКИЕ ПРОДУКТЫ 365 [c.365]

    Полученные закономерности сохраняются независимо от используемого растворителя, если в качестве таковых применяют хлорорганические углеводороды низшего алифатического ряда, что видно на примере гидрохлорирования этилена в присутст-гВИИ AI I3  [c.90]

    Исследование растворимости компонентов масел в алифатических спиртах [38] показало возможность применения последних в смеси с углеводородными компонентами, так как спирты плохо растворяют жидкие углеводороды масляного сырья при температурах депарафинизации. В качестве растворителей для обезмасли-вания и депарафинизации используют также смеси хлорорганических соединений, таких как дихлорэтан и метиленхлорид (процесс 01—Ме) [41, 42, 50]. Этот метод применим для депарафинизации масел любой вязкости и позволяет получать масла с температурой застывания, близкой к температуре фильтрования. При одноступенчатом фильтровании с этим растворителем можно получить масло с температурой застывания —20°С и парафин с содержанием масла 2—6% (масс.). Недостатком всех хлорсодерж.ащих растворителей является их термическая нестабильность При температурах выше 130—140 °С и образование продуктов разложения, вызывающих коррозию аппаратуры. [c.145]


    Для получения масел с низкой температурой застывания применяется процесс 01—Ме [42, 50, 68, 69], в котором растворителем служит смесь дихлорэтана (50—70% масс.), выполняющего роль осадителя твердых углеводородов, и метиленхлорида (50— 30% масс.), являющегося растворителем жидкой фазы. Использование этого растворителя позволяет получать депарафинированные масла с температурой застывания, близкой к температурам конечного охлаждения и фильтрования. Одним из достоинств процесса 01—Ме является высокая скорость фильтрования суспензии твердых углеводородов, достигающая 200 кг/(м -ч) на полную поверхность фильтра. В работах [42, 70] показана возможность иопользования для депарафинизаци и рафинатов широкого фракционного состава смесей дихлорэтана с дихлорметаном и дихлорэтана с хлористым пропиленом. Эти растворители позволяют проводить процесс депарафинизации с ТЭД в пределах О—1 °С, причем в случае двухступенчатого фильтрования содержание масла в парафине не превышает 2% (масс.). Наряду с этим большим достоинством хлорорганических растворителей является возможность исключить из технологической схемы установки систему инертного газа, так как эти растворители негорючи и взрывобезопасны. Общим недостатком всех хлорорганических растворителей является термическая нестабильность при 130—140 °С с образованием коррозионно-агрессивных продуктов разложения. Для выделения твердых углеводородов из масляных фракций предло- [c.158]

    Органическая химия — наука, достижения которой лежат в основе развития промьииленности органического синтеза, вырабатывающей разнообразные химические продукты — углеводороды, карбоновые кислоты и их эфиры, спирты, альдегиды, хлорорганические соединения и другие органические вещества. В свою очередь химические соединения, вырабатываемые промышленностью основного органического сиитеза, служат полупродуктами для производства пластических масс, синтетических волокон, синтетических каучуков, органических красителей, синтетических моющих средств, средств защиты растении и многнх других. Поэтому при изучении курса органической химии читатель должен составить себе ясное представление о неразрывной связи науки с техникой, промышленностью и сельским хозяйством. [c.472]

    Качество нефтей зависит в основном от состава и свойств.углеводородов, а также от содержащихся в них примесей, которые в значительной степени влияют на технологию переработки, качество и выход получаемых нефтепродуктов, способствуют коррозии оборудования и отравляет дорогостоящие катализаторы. Все это в конечном итоге приводит к увеличению стоимости нефтепереработки и себестоимости нефтепродуктов. Поэтому перед поступлением на переработку нефть необходимо подготовить, т. е. максимально удалить из нее такие загрязнения, как воду, соли, механические примеси и др. Особенно сильное коррозионное действие оказьшают хлориды, хлорорганические и сернистые соединения в присутствии воды. [c.3]

    Содержание хлора в катализаторе можно регулировать непосредственно в условиях его эксплуатации, изменяя подачу хлорорганического соединен зЬну катализа (см., гл,, 9), Тер., амым можно ослаблять или усиливать кислотную функцию катализатора и таким образом воздействовать на скорости кислотно-катализируемых реакций дегидроциклизации и гидрокрекинга парафинов, а также дегидроизомеризации пятнчленных нафтенов (см. гл. 1). Лишь при оптимальном содержании хлора в применяемом катализаторе можно достигнуть наиболее выгодного соотношения скоростей разных кислотно-катализируемых реакций. Таким образом, регулирование содержания хлора в катализаторе во время его эксплуатации служит технологическим приемом, использование которого, наряду с обычными параметрами фоцесса, делает возможным получение высоких выходов высокооктанового бензина и ароматических уг леводородов. Иллюстрацией могут служить данные, полученные при риформинге фракции 85—180 °С на полиметаллическом катализаторе КР-108 с разным содержанием хлора [278]. Увеличение массового содержания хлора в катализаторе от 0,25 до 0,96% приводит к значительному увеличению выхода ароматических углеводородов особенно при низт ких температурах процесса, например при 470 °С (табл. 5.6). Увеличение их выхода происходит главным образом за счет дегидроциклизации парафинов. [c.154]

    Известен еще один процесс, который нельзя отнести ни к изомеризации, ни к гидроизомеризации. Он занимает как бы промежуточное положение. Как и при изомеризации, в присутствии А1С1з процесс протекает благодаря образованию обладающего изомеризующей активностью поверхностного слоя на алюмоплатиновом катализаторе. Формирование этого слоя связано с взаимодействием хлорорганических соединений с Р1-Л120з /10/. В результате обработки сьфье подвергается обессериванию, а сероводород и вода удаляются из смеси. Ароматические углеводороды гидрируются в циклопарафиновые углеводороды. Изомеризация осуществляется при 95-16ОРС, 17 атм, отнощении количеств водорода и углеводорода 2 1 и среднечасовой скорости подачи сьфья 1-2 Установки такого типа мо- [c.32]

    Асфальтены растворимы в бензоле, высших углеводородах нефти, в хлорорганических растворителях и в сероуглероде, но нерастворимы в легкокипящих метановых углеводородах, которыми осаждаются из растворов в маслах. Таким образом, асфальтены лиофильны по отношению к одной группе растворителей и лиофобпы — к другой. В лиофильных растворителях асфальтены сперва набухают, как каучук, затем диспергируются по всей массе растворителя, образуя коллоидный раствор. Возможно, что переменное содержание асфальтенов в нефтях связано с плохой растворимостью в метановых углеводородах и вообще большой физико-химической сложностью строения растворов асфальтенов. Во всяком случае нет никакой зависимости между типом нефти и содержанием в ней асфальтенов. Легкая грозненская нефть удельного веса 0,84 содержит до 1,5% асфальтенов, тогда как смолистая нефть с удельным весом около 0,90—0,95% только 0,5%. [c.150]

    Аналогичные исследования ведутся и в отношении хлорорганических соединений. Факт избирательного накопления хлориро ванных парафинов С, —С в органах обоняния и жабрах раду) , ных форелей положен в основу токсикологических исследований как индикатор загрязнения (по избирательному накоплению ра диоактивномеченых соединений). Накопление хлорпарафинов в богатых жиром тканях рыб коррелирует со степенью насыщенности углеводородов хлором. [c.109]

    Нельзя не обратить внимание на организацию экoлoгo-aнilлитичe -кого мониторинга суперэкотоксикантов [10] Среди широко распространенных загрязнителей эти вещества (полиароматические углеводороды, фосфор- и хлорорганические пестициды, нитрозамины, полихлорирован- [c.10]


Смотреть страницы где упоминается термин Хлорорганические углеводороды, ток: [c.252]    [c.96]    [c.96]    [c.233]    [c.230]    [c.217]    [c.183]    [c.404]    [c.82]    [c.396]    [c.153]    [c.214]    [c.215]    [c.12]    [c.44]    [c.107]    [c.112]   
Химия окружающей среды (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вещества хлорорганические углеводород

Методы переработки низших углеводородов в хлорорганические продукты

Хлорорганические

Хлорорганические углеводороды, ток сичность



© 2025 chem21.info Реклама на сайте