Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитические методы переработки углеводородов

    Назначение установки — производство водорода, потребность в котором возрастает из года в год в связи с постоянным углублением процессов переработки нефти, повышением требований к качеству получаемых топлив и смазочных материалов, а также в связи с необходимостью обессеривания энергетического топлива. В качестве сырья для получения водорода методом паровой каталитической конверсии легких углеводородов могут быть использованы природные и заводские (сухие и жирные) газы, а также прямогонные бензины. Этот наиболее распространенный метод производства водорода включает три стадии подготовку сырья к конверсии, собственно конверсию и удаление из продуктов оксидов углерода [5  [c.62]


    При углубленной или глубокой переработке сернистых и особенно высокосернистых нефтей того количества водорода, которое производят на установках каталитического риформинга, обычно не хватает для обеспечения потребности в нем гидрогенизационных процессов НПЗ. Естественно, требуемый баланс по водороду может быть обеспечен лишь при включении в состав таких НПЗ специальных процессов по производству дополнительного водорода. Среди альтернативных методов (физических, электрохимических и химических) паровая каталитическая конверсия (ПКК) углеводородов является в настоящее время в мировой нефтепереработке и нефтехимии наиболее распространен- [c.263]

    При каталитической окислительной переработке углеводородов зачастую получаются сложные смеси кислородсодержащих соединений, анализ которых значительно затруднен. Особенно труден анализ смесей дикарбоновых изомерных кислот. В настоящее время сложные смеси дикарбоновых кислот могут быть проанализированы методом газо-жидкостной хроматографии в виде их метиловых эфиров (1], спектроскопическим методом, а также полярографически [2]. [c.228]

    КАТАЛИТИЧЕСКИЕ МЕТОДЫ ПЕРЕРАБОТКИ УГЛЕВОДОРОДОВ [c.98]

    Известны различные классификации процессов хлорирования углеводородов более часто хлорирование идентифицируют по способу инициирования — термическое, каталитическое, радиационное. Однако, судя по последним исследованиям, механизмы термического и каталитического процессов довольно сходны, в термическом процессе в объеме роль катализатора отводится стенке. Ввиду этого целесообразно рассмотреть процессы хлорирования — важнейшие методы переработки углеводородов и других органических соединений — в зависимости от способа их проведения в объеме газовой фазы, на катализаторе и в жидкой фазе. [c.28]

    В 1925 г. Н. Д. Зелинский показал, что одной из основных причин уменьшения активности контактов при превращениях органических соединений является отложение углистых веществ кокса на поверхности катализатора [193]. Наибольший интерес к этой проблеме проявился с момента широкого внедрения в практику каталитических методов переработки нефтяного сырья. О важности вопроса говорит тот факт, что в ряде ведущих процессов нефтехимии и нефтепереработки затраты на борьбу с образованием кокса превышают затраты на проведение самого каталитического превращения [194]. Обзор материалов о механизмах коксообразования в зависимости от исходных органических веществ, катализаторов и условий процесса представлен в [195]. В работе [194] рассмотрены фундаментальные и прикладные проблемы закоксовываиия катализаторов при каталитическом превращении углеводородов и углеводородсодержащих веществ, дан анализ причин и механизмов закоксовываиия, химических и структурно-морфологических свойств разных видов кокса, механизмов дезактивации контактов вследствие закоксовываиия и путей регулирования этого процесса. Значительный вклад в изучение коксообразования на катализаторах крекинга и риформинга сделан М. Е. Левинтером с сотрудниками. [c.80]


    Весьма важным вопросом нри изучении каталитических процессов переработки углеводородов является определение малых примесей в основных продуктах. Использовавшийся нами универсальный прибор позволял находить очень малые количества веществ благодаря применению метода хроматермографии [16], который, как известно, приводит к концентрированию вещества вследствие сжатия полосы адсорбата. [c.259]

    Видоизменением каталитического крекинга является ароматизация углеводородов — превращение парафинов и циклопарафинов в ароматические углеводороды. В современной промышленности каталитические методы переработки нефтепродуктов быстро развиваются. [c.266]

    Бензол для некоторых производств органического синтеза должен иметь исключительно низкое содержание тиофена и сероуглерода (не более 0,0001% каждого), следы примесей насыщенных углеводородов (особенно н-гептана и метилциклогексана), высокую температуру кристаллизации. Гидрогенизационные методы переработки жидких продуктов пиролиза и каталитический риформинг бензинов в сочетании с экстракцией позволяют получать бензол высокого качества из нефтяного сырья. Хотя в настоящее время преобладающим является бензол, производимый на базе нефти, в нашей стране значительные абсолютные количества его получаются и будут получаться из коксохимического сырья. Система цен, ориентированная на выпуск бензолов высокой степени чистоты, а также растущая потребность в таком бензоле (в частности для производства этил- и изопропилбензолов) делают необходимым привлечение для их получения и каменноугольного сырья. [c.210]

    Как отмечалось ранее, значительные ресурсы полициклических ароматических углеводородов заключены в тяжелых смолах пиролиза, а также в каталитических газойлях. Хотя в полной мере отработанные технологические процессы производства их из этого сырья и отсутствуют, но имеющиеся данные (см. гл. 4) свидетельствуют о возможности получать ректификацией, селективной экстракцией и перекристаллизацией соответствующие ароматические углеводороды. По мере развития мощностей по пиролизу тяжелого сырья ресурсы нефтяных полициклических ароматических углеводородов, по-видимому, превысят их количество в перерабатываемой каменноугольной смоле. Особый интерес могут представить гидрогенизационные методы переработки фракций полициклических ароматических углеводородов, открывающие пути получения фенантрена, свободного от легко подвергающегося гидрокрекингу антрацена. [c.315]

    Углубление переработки нефти создает благоприятные ус лов 1Я для комплексного использования сырья и развития нефтехимического синтеза. Так, в производстве ароматических углеводородов — бензола, толуола, ксилола используют современные вторичные методы переработки нефти — пиролиз прямогонных фракций, каталитический крекинг и платформинг. Перечисленные нефтепродукты являются исходным сырьем для получения, например, синтетического волокна лавсана из п-ксилола, синтезируемого предварительно в терефталевую кислоту и ее эфир — диметилтерефталат. Бензол на нефтеперерабатывающих предприятиях используют в производстве пиромел-литового диангидрида, который при.меняют в синтезе термостойких полимеров типа полиимидов. [c.9]

    Если не считать термических методов, переработка нефтей и нефтяных фракций с применением водорода для получения ценных товарных продуктов возникла и начала использоваться в промышленности раньше, чем другие промышленные процессы превращения, в том числе каталитический крекинг, алкилирование и каталитический риформинг. На протяжении многих лет. гидрирование углеводородов является предметом интенсивных исследований. Эти исследования продолжаются и в настоящее время и охватывают широкую область, что и объясняет многочисленность публикаций, посвященных этой теме, включая патенты. [c.116]

    На применении катализаторов основаны многие методы переработки нефтепродуктов каталитический крекинг, изомеризация, ароматизация и алкилирование углеводородов. Получение жидкого моторного топлива из твердого (ожижение твердого топлива) идет с помощью катализаторов. В табл. 6 приведены некоторые наиболее распространенные промышленные каталитические процессы, сгруппированные по типу каталитических реакций. [c.166]

    Важнейшей задачей науки в области нефтехимии является изучение многообразных термических и каталитических превращений углеводородов нефти и создание наиболее эффективных и экономически выгодных методов переработки газообразного и жидкого нефтяного сырья, позволяющих получать разнообразные органические соединения нужного состава и структуры, необходимые, в свою очередь, для получения полимерных материалов, каучуков, синтетических волокон и т. д. [c.5]

    Известен ряд процессов, приводящих к безоСтаточной переработке нефти, в том числе процессы коксования, гидрогенизационные методы переработки нефтяных дистиллатов и остатков и др. Однако применение гидрогенизационных методов приводит к значительному усложнению и удорожанию процесса производства моторных топлив. Предлагаемый процесс непосредственного каталитического крекинга нефти имеет ряд особенностей, и прежде всего, к числу их относится осуществление интенсивного каталитического разложения высокомолекулярных углеводородов, сернистых и смолистых соединений в присутствии легких, бензиновых и керосиновых фракций, облегчающих испарение и десорбцию продуктов разложения с поверхности катализатора. Легкие фракции нефтей, присутствующие в реакционном пространстве, оказывают-благоприятное действие на процесс вследствие значительного понижения концентрации смолистых веществ в реагирующем сырье. Эти условия позволяют осуществить за однократный пропуск нефти через катализатор полное превращение фракций, кипящих выше 500° С. Тем самым отпадает необходимость в весьма сложной, переработке тяжелых смолистых остатков. [c.136]


    Научные работы относятся к химической кинетике н органическому катализу. Исследовал химию фосфора и его соединений. Изуча.л (193 0—1940) термодинамику и кинетику реакций каталитического превращения углеводородов с целью совершенствования промышленных методов переработки нефти. Установил количественные закономерности, связывающие константы скорости реакций с параметрами, характеризующими катя-лизатор, термодинамическими условиями и макрокинетическими факторами. Рассчитал условия равновесия реакций гидрирования и дегидрирования, гидратации олефинов и дегидратации спиртов, синтеза метана. Вывел кинетическое уравнение для каталитических )еакций в струе. Исследовал связь каталитической активности алюмосиликатных катализаторов с их составом, способом приготовления, кристаллической структурой. Разрабатывал статистические методы расчета термодинамических величин. [211, 290] [c.532]

    Термическое разложение метана и углеводородов может быть проведено самыми различными технологическими методами. Например, углеводороды впрыскивают в расплавленное железо. Происходит распад углеводорода с образованием свободного водорода и растворением углерода в жидком металле. Выделившийся углерод выжигают из железа при продувке расплава воздухом или кислородом. При выжигании углерода тепла получается больше, чем требуется для разложения углеводорода. Избыток тепла используют для получения пара [495]. Водород получается в процессе переработки нефти (каталитический риформинг, пиролиз, дегидрирование углеводородов, гидродеалкилирование) [946]. [c.333]

    В нефти и продуктах ее переработки содержится много насыщенных углеводородов и мало ароматических. Из смеси такого состава получается топливо низкого качества. Для улучшения свойств топлива необходимо изменить углеводородный состав смеси, и каталитические методы позволяют сделать это — с их помощью парафиновые углеводороды можно превращать в ароматическое. Б. А. Казанский и его школа создали разнообразные методы синтеза органических веществ и разработали для них катализаторы. [c.111]

    ТЕХНОЛОГИЯ КАТАЛИТИЧЕСКОГО КРЕКИНГА И ДРУГИХ МЕТОДОВ КАТАЛИТИЧЕСКОИ ПЕРЕРАБОТКИ УГЛЕВОДОРОДОВ [c.273]

    Термическое разложение углеводородов используется в промышленном масштабе с 1912 г. Первоначально его проводили с целью повышения выхода средних дистиллятов (с интервалом выкипания 150—340 °С). Позднее были разработаны другие варианты термического крекинга, в частности висбрекинг, при котором происходит ограниченное расщепление углеводородных молекул в мягких условиях, приводящее к снижению вязкости тяжелых дистиллятов (с температурой кипения выше 250°С), и процессы замедленного коксования и флюид-коксования нефтепродуктов, в которых термическое расщепление ведут в жестких условиях, вызывающих полное превращение исходного нефтяного сырья в кокс, средний дистиллят, бензин (с пределами выкипания 50—200 °С) и газообразные продукты. Бензин термического крекинга непригоден для современных двигателей внутреннего сгорания. Поэтому процесс термического крекинга как метод переработки нефти на моторное топливо был вытеснен каталитическим крекингом и гидрокрекингом, при которых одновременно происходит глубокое расщепление молекул углеводородов и их быстрая меж- и внутримолекулярная перегруппировка. Каталитические процессы не требуют применения очень высоких температур, более селективны и обеспечивают лучшие выходы легких дистиллятов и высококачественного бензина, чем термический крекинг. [c.50]

    Если учесть, что масштабы коксования каменного угля определяются потребностями металлургической промышленности в коксе, а химическая промышленность развивается более высокими темпами, чем коксохимия, то становится очевидной все большая необходимость привлечения процессов нефтепереработки для получения ароматических углеводородов. Кроме того, современные комплексные методы переработки нефти, включающие коксование нефтяных остатков, получение смазочных масел, каталитический крекинг и риформинг прямогонных фракций с получением высокооктановых моторных топлив, а также квалифицированное использование получаемых углеводородных газов, дают более дешевые ароматические углеводороды, чем при коксовании каменного угля. [c.99]

    Методы переработки нефтяных топлив, как и газообразных углеводородов, применяемые или разрабатываемые обществом Газ де Франс, делятся на каталитические и термические. [c.487]

    Характеристика фракций ароматических углеводородов. Существует ароматическое сырье двух основных видов коксохимическое и нефтехимическое, отличающееся главным образом содержанием сернистых соединений. Нефтехимические продукты из-за отсутствия серы в исходных нефтяных фракциях или в результате гидроочистки имеют всего 0,0001—0,002% 5, а коксохимические — примерно в 100 раз больше. Это имеет большое значение при каталитических методах переработки ароматических веществ, когда сернистые соединения приводят к быстрому отравлению или повышенному расходу катализатора. Другими их примесями являются олефины (бромное число до 0,6 г Вгг на 100 г) и парафины (сульфируе-мость не менее 99%). [c.88]

    Химические методы переработки основаны на глубоких структурных превращениях углеводородов, содс[ жа-ии1хся в нефти нлн нефтепродуктах, п(JД влиянием тс.шс-ратуры, давления, катализаторов, химических реагеггоп. К ним относятся различные виды термического и каталитического крекинга нефтепродуктов и др. [c.231]

    При углубленной или глубокой переработке сернистых и осо >енно высокосернистых нефтей того количества водорода, ко — торое производится на установках каталитического риформинга, обы чно не хватает для обеспечения потребности в нем гидрогени — зац1 онных процессов НПЗ. Естественно, требуемый баланс по воде роду может быть обеспечен лишь при включении в состав таких НПЗ специальных процессов по производству дополнительного водс рода. Среди альтернативных методов (физических, электрохимических и химических) паровая каталитическая конверсия (ПКК) углеводородов является в настоягцее время в мировой нефтепереработке и нефтехимии наиболее распространенным промышленным процессом получения водорода. В качестве сырья в процессах ПКК преимущественно используются природные и заводские газы, а также прямогонные бензины. [c.155]

    Криогенные методы основаны иа способности компонентов природного газа легко конденсироваться при низких температурах. Обычно большая часть пропана н практически все более тяжелые углеводороды котщенсируются уже при охлаждении газа до —50 °С. Но для получения гелия высокой чистоты (99,995%) требуется температура конденсации азота (—195,8 °С). Часто на криогенных установках получают гелий-сырец, гелиевый концентрат с содержанием гелия 50—85%. Для получения чистого гелия из сырца используются химические адсорбционные и каталитические методы. Криогенные методы нашли промышленное применение, поскольку легко вписываются в систему комплексной переработки газа. [c.206]

    На современном этапе развития народного хозяйства нефтехимическая и нефтеперерабатывающая промышленность заняла очень важное место. Научные основы современных процессов переработки углеводородов нефти и газа заложены в трудах видных отечественных химиков. Были открыты и изучены пути превращения одних углеводородов в другие, развиты основные теоретические положения по катализу и адсорбции и таким образом была создана база для широкого осуществления промышленных процессов химической переработки углеводородного сырья. Широко распространенные каталитические методы иереработки нефти и нефтепродуктов и методы адсорбционной очистки, осушки и разделения газов связаны с применением высокоактивных и высокопрочных катализаторов и адсорбентов. Среди каталитических процессов ведущими пока являются процессы крекинга с применением алюмосиликатных катализаторов, однако в настоящее время "Йольшое значение приобретают цеолиты (молекулярные сита) и катализаторы на их основе. [c.7]

    Детальное раздельное исследование зависимости физических и химических свойств высокомолекулярных компонентов нефти (углеводородов, смол и асфальтенов) от их элементного состава и химического строения позволит, несомненно, решить, наконец, такую важную для здравоохранения и до сих нор не решенную проблему, как установление ответственных за канцерогенную активность нефтей и нефтепродуктов структурных звеньев и атомных группировок в молекулах компонентов нефти. По литературным данным, канцерогенность нефтепродуктов связывается с по-ликонденсированными ароматическими структурами углеводородов и их производных. С этой точки зрения тяжелые нефтяные остатки, в которых все основные компоненты характеризуются именно такой структурой, представляются особенно интересным объектом для исследования. Твердо установлено, что остатки переработки нефти методами пиролиза и каталитического крекинга — остатки с наиболее богатым содержанием конденсированных ароматических углеводородов, характеризуются особенно высокой канцерогенностью. Экспериментально доказано, что канцерогенность этих нефтяных остатков резко снижается или исчезает совсем, если подвергнуть их гидрированию или окислению в присутствии небольших концентраций озона. Снижение канцерогенности в гидрированных нефтепродуктах — это дополнительный довод в пользу применения гидрогенизационных методов переработки тяжелых остатков [31—35]. [c.263]

    Гибкость и многообразие каталитических процессов позволяют широко использовать деструктивные методы переработки нефти с целью получения сырья для химических производств. В этой области наметились две тенденции с одной стороны, использование отходов (в первую очередь олефинсо-держащих газов) основных процессов, направленных на получение моторных топлив, и, с другой стороны, создание специальных процессов глубокой деструкции нефтяного сырья для получения необходимых количеств оле-финовых углеводородов. [c.41]

    Катализ применяется при получении важнейших неорганических продуктов основной хи.мической промышленности водорода, аммиака, серной и азотной кислот. Особенно велико и разнообразно применение катализа в технологии органических веществ, прежде всего в органическом синтезе — в процессах окисления, гидрирования, дегидрирования, гидратации, дегидратации и др. При помонги катализаторов получают основные полупродукты для синтеза высокополимеров. Непосредственное получение высокомолекулярных соединений полимеризацией и поликонденсацией мономеров также осуществляется с участием катализаторов. На применении катализаторов основаны многие методы переработки нефтепродуктов каталитический крекинг, риформинг, изомеризация, ароматизация и алкилирование углеводородов. Жидкое моторное топливо из твердого (ожижение твердого топлива) получают при помощи катализаторов. [c.210]

    В настоящее время на новых заводах перешли к переработке лигроиновых фракций и других дестиллатов каталитическими методами (ката.питической ароматизацией лигроинов нод давлением водорода, каталитическим крекингом керосино-газойлевых фракций и др.) и процесс термического превращения углеводородов в значительной мере утратил уже свое значение. В прошлом термический крекинг использовался для получения не только автомо бильного крекинг-бензина, но также и газа, применяемого после его фракционирования как сырье для каталитического алкилиро-вания пзобутана, полимеризации алкенов и других процессов. [c.86]

    Основные научные исследован я посвящены химии и технологии переработки нефти и газа. Создал (1972) основы методов целенаправленной модификации природных цеолитов. Посредством хлорирования, нитрования и амииирова-ния углеводородов газоконденсата получил (1975) антиокислитель-ныс, антикоррозионные и бноцид-ные присадки. Разработал (1978) адсорбционно-каталитический метод очистки сернистых газов с одновременным получением кондиционного газа и элементарной серы, нашедший применение на газовых месторождениях Средней Азии. Разработал н внедрил (1977) в промышленность процессы сепарации и раз.деления природного газа в аппаратах с трехфазным псевдоожиженным слоем. [c.270]

    Исходным сырьем для получения современных жидких топлив являются нефть, каменный уголь, сланцы, естественные газы и газы, образующиеся при переработке нефти и угля. Помимо прямой перегонки, в настоящее время разработан и осуществлен в промьшхлен-яом маспггабе ряд термических и каталитических процессов переработки нефти, которые позволяют не просто получать жидкие топлива, но дают возможность направлять процессы с целью получения топлив необходимого качества. В основе этих методов лежат процессы преобразования структуры молекул углеводородов, составляющих исходное сырье. [c.10]

    Повидимому, реакция диспропорционирования водорода имеет особое значение в процессе каталитического крекинга, который за последние годы является одним из главнейших методов переработки углеводородных смесей. Каталитический крекинг осуществляется в присутствии природных или синтетических алюмосиликатов. Характер действия этого катализатора на углеводороды удобно проследить, подвергая повторной каталитической обработке бензин каталитического крекинга. Оказывается при этом, что содержание олефинов в бензине падает, а содержание изопарафинов и ароматики возрастает. Было найдено, что успешному течению такого процесса, получившего название реформинга, или облагораживания, способствует добавление нефтяных фракций, богатых нафтенами, с температурой кипения выше 200°. Первоначально предполагалось, что нафтены отщепляют водород и переходятвароматикуг а освободившийся водород гидрирует изоолефины в изопарафины. Однако в дальнейшем было выяснено, что наличие циклонарафинов для этого процесса хотя и желательно, но не обязательно, так как на гидрирование расходуется, повидимому, больше водорода, чем его могут дать циклопарафины. [c.153]

    В настоящий момент, ввиду небольшого выхода ароматических углеводородов, процесс термической ароматизации уступает месте новым каталитическим методам ароматизации нефтяного сырья. В то же время вновь привлекают к себе внимание газы пиролиза, но ужение как источник освещения, а как сырье, богатое непредельными углеводородами, для нугкд промышленности химической переработки газов. , [c.233]

    Изомеризация алкановых углеводородов. Изомеризац,ия алкановых углеводородов наблюдается практически во всех каталитических процессах переработки нефти, в которых применяются катализаторы, способные давать протоны. Так как во многих случаях изомеризация протекает очень интенсивно и образуются различные изомерные алканы в термодинамически равновесных концентрациях, выяснение механизмов этих превращений является весьма сложной задачей. Между тем, метод меченых атомов во многих случаях позволяет решить эти задачи. [c.5]

    Достаточно упо.мянуть об огромном расширении промышленной химической переработки топлива (в первую очередь нефти и нефтепродуктов), где особенно большое применение нашли каталитические методы. Широко используются синтетические методы производства углеводородов для специальных видов авиа- и автотоплива. Осуществлены новые процессы получения синтетических каучуков, синтетического волокна, пластических масс и органических стекол, органических инсектофунгицидов, лекарственных веществ. Достигнуты крупные успехи в области изучения строения и синтеза сложнейших природных веществ — алкалоидов, витаминов, гормонов, антибиотиков и пр. [c.11]

    В период гражданской войны Н. Д. Зелинский разработал метод бензинизации нефти, т. е. каталитического расщепления тяжелых углеводородов нефти действием хлористого алюминия. Этим он дал возможность молодой Советской республике, временно отрезанной от источников нефти и от заводов по ее переработке, обеспечить фронт бензином за счет имевшихся запасов соляровых масел. [c.132]

    Что Kai aex H бутиленов, то при чисто термической переработке углеводородов их выход лри всех температурах и любом сырье невелик. Поэтому для получения бутиленов больше подходят каталитические методы, что, конечно, не означает отказа от использования бутиленовых фракций, попутно образующихся в процессах термического расщепления нефтепродуктов. [c.58]

    Термические процессы переработки газообразных углеводородов для производства светильного газа имеют более ограиичен1юе примепение, чем каталитические методы производства. В некоторых случаях они позволяют испол .-зовать существующие установки без значительной рекоиструкции. [c.485]


Библиография для Каталитические методы переработки углеводородов: [c.196]   
Смотреть страницы где упоминается термин Каталитические методы переработки углеводородов: [c.216]    [c.61]    [c.374]    [c.198]    [c.36]   
Смотреть главы в:

Химия моторных топлив -> Каталитические методы переработки углеводородов




ПОИСК





Смотрите так же термины и статьи:

методы переработки



© 2025 chem21.info Реклама на сайте