Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Межфазный барьер

    Вест [118] принимает возможность сушествования на поверхности контакта обеих жидких фаз межфазного барьера, построенного из молекул, и приписывает ему большое влияние на массопередачу. Такой барьер образуют молекулы с разной степенью ориентации, расположенные по одну сторону поверхности контакта или по обе. [c.55]

    Сопротивление проницаемости 1/Р многослойной пленки равно сумме сопротивлений проницаемостей отдельных слоев если для исследуемой системы Р не зависит от давления, а диффузия не зависит от межфазных барьеров между слоями  [c.180]


    МОЖНО объяснить наличием межфазного барьера в виде адсорбционного слоя, преодоление которого энергетически затруднено при диффузии ПАВ из воды в винилацетат. [c.276]

    Относительная роль межфазного барьера, характеризуемого уравнением (5.43), очевидно, зависит от других последовательных сопротивлений. В общем случае она вполне пренебрежима при малой скорости массообмена. В своем изящно выполненном исследовании переноса массы в неподвижные жидкости Уорд и Брукс [176] использовали для определения изменения концентрации растворенного вещества в зависимости от расстояния от границы раздела фаз интерферометрический метод. При растворении бензойной кислоты в воде, проводя экстраполяцию концентрационных кривых на небольшие расстояния, они нашли, что концентрация на границе раздела фаз составляет 0,02796 н в отдельных опытах по насыщению в статических условиях было получено значение, равное 0,0280 н. Очевидно, что в пределах точности этих очень хороших данных жидкость на поверхности находилась в равновесии с твердым веществом. Скорость массопередачи была, однако, низкой, а диффузионное сопротивление неподвижной воды — относительно высоким. [c.209]

    Выделение каучука из латекса. Агрегативную и кинетическую устойчивость синтетических латексов, учитываемую на всех стадиях технологического процесса их получения и переработки, определяет наличие на поверхности латексных частиц адсорбционного слоя из молекул гидратированного эмульгатора. Свойства межфазной поверхности — адсорбированного слоя гидратированных молекул поверхностно-активных веществ (ПАВ) со структурой, близкой к мицеллярной [26], — определяют устойчивость латекса при транспортировании насосами, при хранении, при выделении каучука из латекса. Специфичность воздействия отдельных факторов на латексы привела к делению агрегативной устойчивости на отдельные виды стабильности — к механическому воздействию, к электролитам, к замораживанию, к тепловому воздействию, к действию растворителей [27], но во всех случаях при нарушении устойчивости происходит снятие или преодоление одного и того же по своей природе стабилизующего барьера [28—30]. [c.255]

    Простая и наглядная трактовка физической сущности распределения вещества между двумя жидкими фазами может быть дана на основе представлений Уорда и Брукса [15] об энергетической стороне межфазного обмена. Эпюра изменения свободной энергии при переходе одного из компонентов раствора через поверхность раздела фаз изображена схематически на рис. 5.2. При переходе вещества из одной фазы в другую должен быть преодолен барьер [c.85]


    Для рассматриваемого типа НДС фактором, определяющим устойчивость, является структурно-механический барьер, концепция которого была предложена Ребиндером [17].Он имеет место в дисперсных системах со структурированными межфазными слоями, сформированными в результате адсорбции из раствора ПАВ. [c.27]

    В связи с тем, что поверхностный заряд распределяется диффузно в обеих жидких фазах и лишь часть межфазного скачка потенциала приходится на дисперсионную среду, f-потенциал дисперсных капелек, как правило, невелик. С одной стороны,это сильно снижает высоту возникающего потенциального барьера, с другой - затрудняет управление разделением эмульсий в электрических полях. К тому же диаметр капелек в разбавленных эмульсиях близок к размеру коллоидных частиц и составляет, как правило, 10" см. [c.15]

    В лиофильных дисперсных системах межфазный слой характеризуется малым увеличением плотности свободной энергии и не имеет четкой границы. Разность /а—/э очень мала, энергетический барьер в этом случае почти отсутствует и Оар =акр. Поэтому под действием, напрпмер, теплового движения лиофильные дисперсные системы могут самопроизвольно диспергироваться, образуя термодинамически устойчивые дисперсные растворы. Свободная энергия системы при этом уменьшается, т. е. в процессе диспергирования происходит увеличение энтропии, что способствует уменьшению энергии dQ, поскольку система приходит к более вероятному равномерному распределению дисперсной фазы в дисперсионной среде, т. е. [c.67]

    Тип образующейся эмульсии определяется свойствами эмульгатора. Прочность и устойчивость образовавшейся адсорбционной оболочки являются факторами, определяющими устойчивость эмульсии. Таким образом, эмульгатор снижает поверхностное натяжение на межфазной границе и образует структурно-механический барьер (оболочку), придающий системе устойчивость. Как следствие отсюда, Банкрофт установил следующее правило  [c.15]

    Очевидно, снижение энергии образования зародыша паровой фазы приводит к уменьшению размеров единичного зародыша и повышению их общего количества, а следовательно, и увеличению площади испарения системы. Более того, в подобных случаях избыток тепла будет расходоваться на создание дополнительных центров зарождения новой фазы, а снижение межфазного натяжения улучшает условия перехода жидкости в пар вследствие понижения на молекулярном уровне энергии активации для преодоления пограничного потенциального барьера. [c.111]

    Устойчивость эмульсий типа в/м, стабилизованных мылами с поливалентным катионом, ранее объяснялась главным образом ка- личием на поверхности капелек эмульсии структурно-механического барьера. Объяснение же устойчивости эмульсий типа в/м существованием на межфазной поверхности двойного электрического слоя на первый взгляд кажется невозможным вследствие малой диэлектрической проницаемости дисперсионной среды. Однако, как уже указывалось (гл. IX, разд. II), в последние годы было показано, что даже в неполярных средах может происходить некоторая диссоциация молекул эмульгатора. Соли поливалентных металлов и органических кислот в углеводородных средах обычно имеют константы диссоциации порядка 10 . Следовательно, если, на- пример, концентрация такой соли в бензоле равна 10 ммоль/л, то концентрация ионов в растворе будет иметь значение порядка 10 ° н. При таких условиях двойной электрический слой будет, конечно, очень диффузным расчеты показывают, что его толщина должна составлять несколько микрометров. Отсюда емкость двойного слоя в неполярной жидкости должна быть весьма невелика и нужен очень небольшой заряд для того, чтобы обусловить значительный поверхностный потенциал. Таким образом, электростатические силы отталкивания могут играть существенную роль и в устойчивости обратных эмульсий, особенно не очень концентрированных. [c.374]

    В общем виде это уравнение, как отмечалось, справедливо для лю(бого электродного процесса, который может протекать в прямом и обратном направлении встречает на межфазной границе тот или иной потенциальный барьер. [c.390]

    Таким образом, стабилизирующее действие эмульгатора заключается не только и не столько в снижении о на межфазной границе, сколько в образовании структурно-механического барьера, обеспечивающего устойчивость эмульсии. Это общее положение хорошо подтверждается при рассмотрении действия так называемых твердых эмульгаторов. Уже давно было известно, что хорошей стабилизирующей способностью обладают не только ПАВ, но и тонкоизмельченные порошки, не обладающие поверхностной активностью, например, глина, мел, сажа и др. В результате адгезионного взаимодействия, рассмотренного нами при изучении флотации (стр. 65), частицы порошка собираются на межфазной границе, образуя прочную пространственную коагуляционную структуру, препятствующую коалесценции. [c.288]


    Тем не менее, эффективность столкновений незащищенных капелек в больщинстве случаев оказывается весьма высокой. Расчет электростатических сил отталкивания показывает, что они малы, по сравнению с твердыми частицами [15, с. 366]. Это объясняется прежде всего тем, что поверхностный заряд распределяется диффузно в обеих жидких фазах, и лишь часть межфазного скачка потенциала приходится на дисперсионную среду, что сильно снижает высоту возникающего в ней потенциального барьера. [c.280]

    Таким образом, стабилизирующее действие эмульгатора заключается не только и не столько в снижении ст на межфазной границе, сколько в образовании структурно-механического барьера, обеспечивающего устойчивость эмульсии. Это общее положение хорошо подтверждается при рассмотрении действия так называемых твердых эмульгаторов. Уже давно было известно, что хорошей стабилизирующей способностью обладают не только ПАВ, но и тонкоизмельченные порошки, например глина, мел, сажа и др. В результате адгезионного взаимо- [c.310]

    Подобная взаимная (см. раздел ХП1.4) коагуляция возможна даже при наличии у частиц адсорбционно-сольватного барьера, если при сближении частиц он оказывается между вторым минимумом и поверхностью пузырька. Для толстых ад-сорбционно-гидратных слоев это условие не выполняется по существу, при этом исчезает второй минимум или же его глубина становится малой, так как силы отталкивания неэлектростатической природы компенсируют силы притяжения при достаточно большой толщине межфазной пленки, разделяющей частицу и пузырек. [c.371]

    Важной чертой структурно-механического барьера являются, таким образом, реологические свойства (см. 1, 3 гл. XI) межфазных слоев, обусловливающие термодинамические (возникновение упругости) и гидродинамические (повышенная вязкость) эффекты ири стабилизации. Упругость межфазных слоев может Определяться силами различной природы. Для плотных адсорбционных слоев это может быть истинная упругость, свойственная твердой фазе и обусловлен- [c.261]

    Структурно-механический барьер является, таким образом, сложным фактором стабилизации — совокупностью ряда термодинамических, кинетических и структурных (связанных со структурными особенностями межфазных слоев) факторов. [c.263]

    Исследованиями П. А. Ребиндера и его школы [15, 20] установлено, что основной причиной устойчивости достаточно концентрированных эмульсий нефти типа В/Н является структурно-механический барьер, образующийся вокруг глобул воды в результате адсорёции на межфазной поверхности эмульгаторов (асфальтенов, смол и щ>.), содержащихся в вефтн. Остальные факторы стабилизации эмульсий (электрокинетичес-кяй потенциал, расклинивающее давление и др.) для нефтяных эмульсий типа В/Н являются второстепенными и существенного значения не имеют. По П. А. Ребиндеру стабилизацию нефтяных эмульсий обеспечивают  [c.18]

    Как указьшалось выше, основным стабилизирующим фактором нефтяных эмульсий В/Н является прочный структурно-механический барьер вокруг глобул воды, образованный в результате адсор щи на межфазной поверхности гнщюфобных веществ - эмульгаторов и стабилизаторов, содержащихся в нефти преимущественно в виде коллоидного раствора - олеофильного золя или в виде выоокодиспергированных частиц. [c.22]

    Добываемая нефть содержит значительное количество воды, механических примесей, минеральных солей. Поступающая на переработку нефтяная эмульсия подвергается обезвоживанию и обес-соливанию. Характерными чертами нефтяных эмульсий являются их полидисперсность, наличие суспендированных твердых частиц в коллоидном состоянии, присутствие ПАВ естественного происхождения, формирование при низких температура х структурных единиц. По данным [144] в процессе диспергирования капель воды в нефти образуется до триллиона полидисперсных глобул в 1 л 1%-ной высокодисперсной эмульсии с радиусами 0,1 10 мк, образующаяся нефтяная эмульсия имеет большую поверхность раздела фаз. Высокие значения межфазной энергии обуславливают коалесценцию глобул воды, если этому процессу не препятствует ряд факторов структурно-механический барьер, повышенные значения вязкости дисперсионной среды. Установлено, что повышению структурно-механической прочности межфазных слоев в модельной системе типа вода — мас о — ПАВ способствует добавка частиц гЛины [145]. Агрегативная устойчивость нефтяных эмульсий обеспечивается наличием в них ПАВ — эмульгаторов нефтяного происхождения так, эмульгаторами нефтяных эмульсий ромашкинской и арланской нефтей являются смолисто-асфальтеновые вещества, а эмульсий мангышлакской нефти алканы [144]. Интересные результаты об изменении степени дисперсности нефтяных эмульсий в зависимости от pH среды и группового состава нефтей получены в работе [146]. Механизм разрушения нефтяных эмульсий состоит из нескольких стадий столкновение глобул воды, преодоление структурно-механического барьера между rлoбyJ лами воды с частичной их коалесценцией, снижение агрегативной устойчивости эмульсии, вплоть до полного расслоения на фазы. Соответственно задача технологов состоит в обеспечении оптимальных условий для каждой стадии этого процесса, а именно - снижении вязкости дисперсионной среды (до 2—4 ммУс) при повышении температуры до некоторого уровня, определяемого групповым составом нефти, одновременно достигается разрушение структурных единиц уменьшении степени минерализации остаточной пластовой воды введением промывной воды устранении структурно-механического барьера введением определенных количеств соответствующих ПАВ — деэмульгаторов. Для совершенствования технологических приемов по обессоливанию и обезвоживанию нефтей требуется постановка дальнейших исследований по изучению условий формирования структурных единиц, взаимодействия [c.42]

    Разбавленные эмульсии могут быть достаточно устойчивы в присутствии таких слабых эмульгаторов, как электролиты. Устойчивость таких эмульсий связана в основном с наличием двойного электрического слоя на частицах дисперсной фазы. Устойчивость концентрированных и высококонцентрированных эмульсий в большинстве случаев определяется действием структурно-механического барьера при образовании адсорбционных слоев эмульгатора. Характерно, что образующиеся межфазные адсорбционные слои обусловливают плавное изме-ненпе свойств переходной зоны на границе раздела двух жидких фаз, увеличивая лиофильность частиц дисперсной фазы. Наиболее сильное стабилизирующее действие оказывают высокомолекулярные соединения и коллоидные ПАВ (мыла, неионогенные ПАВ), адсорбционные слои которых имеют гелеобразную структуру и сильно гидратированы. [c.171]

    В работах А. Б. Таубмана и С. А. Никитиной с сотрудниками показано, что возникновение структурно-механического барьера связано с самопроизвольным образованием ультрамикроэмульсии (УМЭ) на границе раздела двух жидких фаз. Возникновение УМЭ можно легко наблюдать, если наслоить углеводород (масляная фаза) на водный раствор эмульгатора. Спустя некоторое время на границе раздела фаз появляется тонкая молочно-белая прослойка, постепенно утолщающаяся в сторону водной фазы. Это явление — следствие гидродинамической неустойчивости межфазной поверхности углеводород—раствор ПАВ, обусловленной I двусторонним массопереносом через границу раздела (переход в водную фазу вследствие внутримицеллярного растворения, перераспределение эмульгатора между фазами благодаря некоторой растворимости его в углеводороде). В результате возникающей поверхностной турбулентности в обеих фазах вблизи поверхности раздела спонтанно развивается процесс эмульгирования с образованием капелек эмульсии как прямого типа (в водной фазе), так и обратного (в углеводороде). Однако обратная эмульсия, как правило, грубодисперсна, малоустойчива и легко разрушается, тогда как прямая имеет коллоидную степень дисперсности (размер капелек соизмерим с размером мицелл, солюбилизировавших углеводород) и обладает высокой агрегативной устойчивостью. Ультрамикрокапельки ее защищены адсорбционными слоями эмульгатора, которые связывают их в сплошную гелеобразную структуру с заметно выраженной прочностью и другими структурно-механическими свойствами. [c.194]

    А. Б. Таубманом с сотр. показано, что устойчивые эмульсии могут образовываться также в результате возникновения на по-поверхности капелек основной эмульсии....нескольких слоев микрокапелек, служащих структурно-механическим барьером. Такие микрокапельки возникают вследствие явлении" турбулентности у поверхности капелек основной эмульсии, обладающей малым межфазным натяжением. [c.374]

    По Ребиндеру, структурно-механический барьер возникает при адсорбции молекул ПАВ, которые могут быть не сильно поверхностно-активными для данной границы раздела фаз, но способны к образованию гелеобразного структурированного слоя на межфазной границе (ПАВ третьей и четвертой групп по классификации, приведенной в 3 гл. И). Этот слой подобен трехмерной структуре — гелю, который может возникать в растворах ряда веществ при достаточной их концентрации. К таким веществам относятся глюкозиды, белки, производные целлюлозы (карбоксиметилцеллюлоза) и другие так называемые защитные коллоиды — высокомолекулярные вещества со сложным строением молекул, которые имеют области меньшей и большей гидрофильности в пределах одной молекулы. По отноше-лию к дисперсиям гидрофильных порошков в неполярных жидкостях высокой стабилизирующей способностью обладают многие маслорастворимые ПАВ, способные прочно (химически) адсорбироваться на поверхности гидрофильных частиц. Стабилизированные таким путем лиофобные системы приобретают свойства дисперсий данного стабилизатора, т. е. становятся лиофилизованнымн. По Ребиндеру, следующие условия определяют высокую эффективность структурно-механического барьера. [c.261]

    В системе жидкость — твердая фаза (где твердой фазой служат NaOH, КОН, К2СО3, ЫагСОз) такой обмен не идет. В этом случае реакции, например депротонирование, по-видимому, проходят на поверхности раздела фаз, а катализатор межфазного переноса просто снижает энергию барьера реакции (как в случае гетерогенного катализа). Более подробно механизм межфазного катализа обсужден в следующем разделе. [c.8]

    Работами П.А. Ребиндера и его сотрудников еще в 20-х годах была развита теория структурно-механического барьера в стабилизации эмульсий, которая в настоящее время является наиболее признанной. Она основьгвается на механической связи дисперсионной среды и дисперсной фазы молекулами эмульгатора с возникновением структурно-механического слоя на межфазной поверхности. Благодаря таким свойствам слоя механически предотвращается соприкосновение частиц и их слияние между собой. [c.24]


Смотреть страницы где упоминается термин Межфазный барьер: [c.55]    [c.65]    [c.276]    [c.65]    [c.194]    [c.340]    [c.86]    [c.12]    [c.237]    [c.282]    [c.218]    [c.261]   
Смотреть главы в:

Жидкостная экстракция в химической промышленности -> Межфазный барьер




ПОИСК





Смотрите так же термины и статьи:

Барьер

Межфазные



© 2025 chem21.info Реклама на сайте