Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение управление процессом

    Циклический метод ведения процесса привлек большое внимание исследователей и практиков. Уже первые работы по циклической ректификации показали рост производительности и эффективности разделения в 2-3 раза по сравнению с обычными методами ведения процесса. При этом возможна большая гибкость управления процессом за счет изменения длительности подачи той или иной фазы. [c.212]


    Инфракрасные промышленные анализаторы потока относятся к наиболее важным приборам контроля качества, применяемым для управления процессом. Они могут быть использованы в процессах разделения смесей на составляющие компоненты, например при точной (дробной) разгонке, улавливании растворителя, операциях смешения и для обнаружения примесей. Во многих случаях прибор может быть использован для определения наличия одного компонента в присутствии многих других. [c.9]

    Программы, используемые в УВС для обработки данных измерений и управления процессами, можно разделить на три группы организующие, обслуживающие и вспомогательные. Однако такое разделение является условным, так как точная классификация каждой программы возможна далеко не всегда. [c.69]

    Рассмотрим пример использования УВС для управления процессом разделения смеси продуктов в ректификационной колонне [1]. Из 17 возможных в используемом вычислительном комплексе РЯ 2000 уровней приоритета используются следующие 14 уровней  [c.73]

    Основным оборудованием установки избирательного измельчения первоначально были аппараты ОКС-250 производительностью 250 т/ч, разработанные КБА и М Гипрококса. Отделитель представляет собой комплексный агрегат для классификации угля с системой непрерывной загрузки исходной шихты и разгрузки мелкого и крупного продуктов, замкнутого контура циркулирующего воздуха, систем регулирования и управления процессом разделения (рис.7.2). [c.207]

    Основным типом адсорбционных установок до последнего времени остаются установки периодической адсорбции, в которых адсорбер со стационарным слоем адсорбента после окончания стадии очистки или разделения переключается на стадию десорбции [1, 2]. В рабочий цикл периодического адсорбера обычно включают ряд дополнительных стадий сушка и охлаждение адсорбента, повышение и сброс давления и т. д. Широкое применение автоматизации на адсорбционных установках позволило исключить ручной труд при управлении процессом. [c.250]

    Изопентан является недостаточно эффективным десорбентом, вследствие чего процесс приходится проводить в неизотермическом режиме. Отсюда вытекают основные недостатки метода — необходимость большого расхода циркулирующего изопентана, достаточно сложное оборудование и управление процессом разделения. Иногда в качестве десорбента применяют к-бутап или к-пентан. [c.441]

    Экономия энергоресурсов от комбинирования процессов достигается за счет сокращения затрат на промежуточное разделение продуктов реакции, за счет улучшения условий управления процессом и увеличения концентраций производства. [c.115]


    В -термогравиметрии осуществляется целенаправленное управление процессами переноса, причем с помощью самого превращения. В результате такого управления может быть достигнуто так называемое квазиравновесное состояние. В этом случае экспериментальные зависимости (температура, давление) будут действительно характеристиками изучаемой реакции. Даже значительное сужение температурного интервала протекания реакций, происходящее в данном режиме исследования, решает задачу разделения стадий, что едва ли возможно в ином методе термического анализа. [c.77]

    Как уже было сказано, капиллярная хроматография не позволяет осуществлять контроль производственных смесей и тем более — совмещать контроль с автоматизацией управления процессом. Стремление улучшить условия разделения многокомпонентных смесей приводит к тому, что на колонку стараются наносить как можно меньшее количество пробы анализируемых веществ. Это стремление во многих случаях оправдывается, хотя и приводит к уменьшению концентрации в максимуме полосы по сравнению с исходной по крайней мере в десятки, а иногда и в сотни раз, что существенно затрудняет применение хроматографического метода анализа для решения одновременной задачи автоматизации управления процессом. [c.242]

    Сравнивая тонкослойную хроматографию с колоночной, можно отметить следующие преимущества первого метода 1) простоту приемов и оборудования 2) невысокую стоимость анализа 3) большие потенциальные возможности (для управления процессом разделения используют не только жидкую, но и газовую фазу возможно качественное и количественное определение всех анализируемых соединений независимо от их хроматографической подвил<ности). Необходимо указать, однако, и на некоторые недостатки классического метода по сравнению с колоночной детекторной жидкостной хроматографией, а именно на существенную длительность высокая трудоемкость и продолжительность характерна также для методики количественного определения. [c.6]

    Ранее процесс повышения вязкости полиэфирной смолы без потери текучести из-за образования сплошной сетки химических связей не казался таким уж важный. Однако перечисленные ниже моменты иллюстрируют преимущества такой технологии при производстве армированных полиэфиров из-за возрастания вязкости расплавленной смолы достигаются более высокие напряжения, обеспечивающие улучшенную отделку поверхности изделия высокая вязкость препятствует разделению волокна и смолы в процессе формования изделия повышается эффективность загрузки из-за снижения непроизводительных потерь материала исключается выдавливание смолы в процессе формования облегчается автоматическое управление процессами производства. [c.271]

    В качестве простейшего примера рассмотрим процесс ректификации в одиночной колонне. Параметрами, определяющими этот процесс, являются производительность П, состав исходной смеси Xf, условия разделения, задаваемые любым способом (пап ример, чистотой фракции и х-щ), флегмовое число Н, число теоретических тарелок N. номер тарелки nf подачи исходной смеси, диаметр колонны О, давление в колонне Р. При оптимальном проектировании на основе этих данных и экономических показателей находят габариты колонны и определяют номинальный режим ее работы. При оптимальном управлении процессом вычисляются оптимальные значения регулируемых параметров. [c.125]

    Параметр управления процессом идеальной или четкой ректификации (заданное разделение) - Р/]У, где Р — дистиллят, W- нижний продукт. [c.209]

    Вентили в сочетании с изоляциями образуют арсенал средств, с помощью которых производится управление процессами переноса обобщенных координат от одного объекта к другому. Практически это делается путем разделения взаимодействующих объектов разного рода изолирующими оболочками (перегородками, стенками), снабженными различными вентилями. Реальные изоляции и вентили относятся к числу устройств, которые способны сохранять на заданном уровне свои проводимости, изменяя прочие свойства под воздействием соседних с ними объектов. Поэтому при анализе взаимодействий между системой и окружающей средой или любыми другими объектами следует учитывать все изменения, происходящие в изоляциях и вентилях. [c.32]

    Таким образом, кинетические характеристики химических реакций в плазменной струе нечувствительны к изменению начальной скорости газового потока. Вариации начальных скоростей газа меняют лишь пространственные масштабы процесса, позволяя изменять расстояния между частями реактора, которые обогащены различными веществами, участвующими в реакции. Например, максимум концентрации ацетилена во всех трех случаях (ио1 = = 300 м сек, Уо2 = 500 м/сек и Иоз = ЮО м/сек) расположен в точках, координаты которых (2 1 = 21 см, 2 2 = 36 см и 2, з = = 8 см) существенно отличны одна от другой. В то же время максимум концентрации этилена во всех трех случаях находится в точках, координаты которых = 0,1—0,5 см) различаются относительно мало. Следовательно, с возрастанием начальной скорости газа расстояние 2 — 2 между областями плазменной струи, обогащенными этиленом и ацетиленом, возрастает. Это может оказаться полезным для управления процессом, так как, меняя начальную скорость газа, можно управлять степенью пространственного разделения участков плазменной струи, обогащенных различными веществами, которые участвуют в реакции. [c.36]


    Для оценки возможности разделения ионов и сознательного управления процессом разделения на данном адсорбенте нужно определить константы обмена и константы комплексообразования соответствующих ионов. Это дает возможность установить оптимальные параметры для проведения опыта в условиях, обеспечивающих возможно более полное отделение ионов друг от друга. [c.86]

    Управление процессами, протекающими при больших скоростях, высоких температурах и давлениях, высоких уровнях радиации, иногда вне досягаемости экспериментатора и даже вне Земли, немыслимо без автоматизации. Иногда необходимо автоматизировать контроль химического состава участвующих в данных процессах веществ. В этих случаях используют также физические и физико-химические методы анализа, которые дают возможность проводить быстрое и автоматическое определение без предварительного разделения элементов и, если необходимо, дистанционный контроль состава веществ. [c.16]

    С увеличением объема пробы эффективность колонки падает очень быстро. Чтобы избежать этого, следует повторно проводить разделение малых проб до тех пор, пока не будет накоплено требуемое количество вещества в чистом виде. Если введение пробы и управление процессом производится вручную, то оператор быстро утомляется. Здесь-то и необходима автоматизация. При использовании проб малых объемов перегрузки сведены к минимуму и возможны более сложные разделения. [c.97]

    Управление, процессом. Контроль за работой колонны для экстрах -ционной перегонки обычно затруднителен, так как температурный градиент, устанаиливающийся в колош[В, не соответствует тому процессу разделения, которое должно производиться. Обычно контроль ведется по материальному балансу на основе ежечасного отбора проб для анализов. В некоторых случаях для производства непрерывного анализа с целью управления процессом в колонне применяют спектральные приборы. [c.118]

    Большую роль в повышении эффективности фракционирования слоншых смесей сыграло создание жидкостной хроматографии высокого давления (ЖХВД). Высокая скорость разделения, возмож ность реализации любого из отмеченных выше механизмов сорбции, применимость для разделения любых растворимых в элюенте соединений, независимо от их молекулярной массы, возможность непрерывного контроля элюирования с помош ью высокочувствительных детекторов, управления процессом разделения путем программирования температуры, скорости потока и состава элю-ента, автоматическая регистрация результатов обеспетали широчайшее распространение ШХВД для решения препаративных задач, количественного анализа и идентификации компонентов анализируемых смесей [109, 111, 122 и др.]. [c.17]

    Типовая промышленная установка избирательного дробления углей состоит из двух йтделителей мелких классов угля в кипящем слое (ОКС) и четырех молотковых дробилок. Отделители мелких классов (ОКС) представляют собой аппараты для пневматической классификации по крупности и плотности, оборудованные системой непрерывной загрузки предварительно дробленной шихты и раздельной выгрузки мелких и крупных классов, циркуляции и подогрева воздуха, регулирования и управления процессом разделения. Производительность ОКСа 400 т/ч по углю или шихте. [c.69]

    Значение инструментальных методов анализа, как и современных методов разделение (см. гл. 38), постоянно возрастает, что обусловлено требованиями науки и производства. Так, например, появилась тенденция использования сырья, содержащего очень небольшие количества целевого продукта, а также извлечения элементов из отходов производства, в которых эти элементы находятся в очень небольщих количествах. Кроме того, все шире используются особо чистые вещества и композиционные материалы, к которым предъявляются высокие требования, в частности постоянство концентраций комло-нентов (металлургия, полупроводниковая техника). Постоян-но растущая рационализация и автоматизация производств и связанный с этим более быстрый выпуск продукции диктуют необходимость использования аналитических методов, обладающих большой чувствительностью, точностью и быстротой. Быстрота анализа— особенно важный фактор, так как все в большей степени контроль готовой продукции заменяют своевременным контролем качества полупродуктов в ходе технологического процесса с целью регулирования процесса в нуж-,ном направлении. Поэтому аналиа также должен быть по возможности автоматизирован, саморегистрируем, а полученный сигнал должен быть использован для управления процессом. [c.255]

    НЫХ методов анализа (например, применение фотоэлектрических фотометров, рН-метров). В ходе управления процессами обогащения угля и переработки нефти использовали в основном данные анализа, характеризующие анализируемую пробу в целом, например температуру затвердевания или температуру вспышки, предел воспламеняемости или данные об отношении анализируемой пробы к действию раствора перманганата калия. Определение ряда таких характеристик, например определение плотности и давления паров, определение вязкости или снятие кривых разгонки, можно осуществлять при помощи приборов. Указанные методы анализа важны для контроля качества веществ, но они не соответствуют современному уровню исследований и контроля производства, а также не способствуют прогрессу в этих областях. Развитие аналитической химии происходит в направлении внедрения физико-химических методов анализа или методов, использующих специфичные свойства веществ, при этом на первый план выдвигаются методы газовой хроматографии. В связи с этим на примере развития газовой хроматографии можно проследить тенденции развития аналитической химии в целом. Метод газовой хроматографии известен с 1952 г., в 1954 г. появились первые производственные образцы газовых хроматографов, а уже в 1967 г. четвертая часть всех анализов, проводимых на нефтеперерабатывающих заводах США, осуществлялась методом газовой хроматографии (А.1.13]. К 1968 г, было выпущено свыше 100 ООО газовых хроматографов [А.1.14], и лишь небольшую часть из них применяли для промышленного контроля. Газовые хроматографы были снабжены детекторами разных типов в зависимости от специфических свойств анализируемого вещества, его количества и молекулярного веса, позволяющими провести определение вещества при его содержании от 10 до 100% (в случае определения летучих неразлагающихся веществ в газах — при содержании 10- %). К подбору наполнителя для колонок при разделении различных веществ подходили эмпирически. В 1969 г. появились газовые хроматографы, которые наряду с различными механическими приспособлениями содержали элементы автоматики. Для расчета результатов анализа по данным хроматографии и в лаборатории и в ходе контроля и управления процессом применяли цифровые вычислительные машины в разомкнутом контуре. В настоящее время эти машины вытесняются цифровыми вычислительными машинами в замкнутом контуре. При этом большие вычислительные машины со сложным оборудованием можно заменить небольшими. В будущем результаты анализа можно будет получать гораздо быстрее. Методы газовой хроматографии в дальнейшем вытеснят и другие методы анализа мокрым путем и внесут значительный вклад в автоматизацию процессов аналитического контроля. Внедрение техники и автоматизации в методы аналитической химии будет способствовать увеличению числа специалистов с высшим и средним специальным образованием, работающих в области аналитической химии. В настоящее время деятельность химиков-аналитиков выглядит совершенно иначе. Химик-аналитик должен обладать специальными знаниями в области химии, физики, математики и техники, а также желательно и в области биологии и медицины. Все это необходимо учесть при подготовке и повышении квалификации химиков-аналитиков, лаборантов и обслуживающего пс[)сонала. [c.438]

    Хотя работа отдельных устройств для управления процессом ректификации уже была описана в главе 5.223, все же необходимо обсудить еще несколько моментов, на которые следует обратить внимание (рис. 169). Во избежание длительного вывода колонки на режим смесь, вводимая в куб колонки, должна к моменту подачи питания иметь состав, соответствующий ожидаемому кубовому отходу. Одновременно необходимо обеспечить хорошее смачивание насадки. Поэтому жидкость, введенную в куб, сначала перерабатывают периодически, отбирая при этом соответствующее количество дистиллата ожидаемого состава, и только после этого начинают подачу питания, которое предварительно нагрето в подогревателе до требуемой температуры. По мерной бюретке устанавливают скорость подачи питания. В головке колонки устанавливают необходимое флегмовое число. Нагрузка укрепляющей части колонки зависит от количества питания ее дополнительно регулируют с помощью контактного термометра. Как это видно из главы 4.72, установка должна работать таким образом, чтобы количества отбираемого дистиллата и кубовой жидкости в единицу времени соответствовали подаче исходной смеси (питания). Краны на приемниках для отбора из головки и куба устанавливают в таких положениях, чтобы в единицу времени через них проходили соответствующие количества вещества. В качестве примера можно привести непрерывное разделение смеси бензол—толуол, содержащей 20 об.% бензола. При подаче исходной смеси со скоростью 500 млЫас следует установить скорость отбора дистиллата 100 млЫас и скорость отбора кубовой жидкости 400 мл/час. При флегмовом числе 2 нагрузка должна составлять 300 мл1час. Как показывает практика, введение колонки в режим занимает от 0,5 до 1 часа, что выражается в колебаниях температур верха и куба (рис. 179) ). После того как отрегулирована температура подогрева питания, установка работает с постоянными показателями, а необходимое обслуживание ограничивается только контролем потоков и наблюдением за показаниями приборов. [c.276]

    В настоящее время в НИИШП испытывается опытный агрегат поточной сборки грузовых автопокрышек с разделением всего процесса сборки на отдельные группы операций, выполняемые на восьми специальных станках. Этот агрегат имеет автоматизированное управление, все станки связаны между собой транспортной системой При применении такого агрегата в несколько раз повышается производительность труда, облегчаются условия труда и улучшается качество покрышек. [c.453]

    Однако частые и быстрые изменения производственной ситуации не позволяют при современных технических средствах управлять процессом перекачки нефтепродуктов на всем магистральном трубопроводе только из одного центрального органа. Это обусловило необходимость разделения нефтенродуктопровода на отдельные территориальные участки, в пределах которых оперативное управление эксплуатационной работой по перекачке продукции может осуществляться наиболее эффективно. Первичным звеном такого деления сети нефтепродуктопроводов являются диспетчерские участки, территориальные (линейные) границы которых устанавливаются исходя из возможностей средств управления процессом перекачки нефтепродуктов в оптимальном режиме. Обычно границами такого диспетчерского участка являются смежные крупные перекачивающие станции или наливные пункты магистральных нефтепродуктопроводов. Диспетчерские участки представляют собой однородные звенья управления процессом перекачки. [c.19]

    Аналнт. контроль работы дистилляц. установок включает стандартные методы определения типичных характеристик качества осн. дистиллятов в лаб. условиях, а также в производств. потоках для получения непрерывной информации в системах автоматич. управления процессом. Важный показатель продуктов-фракционный состав, к-рый устанавливают простой перегонкой и по к-рому судят также о четкости разделения смежных дистиллятов. Для характеристики детализир. состава нефти и ее дистиллятов используют фракционный состав по истинным т-рам кипения (НТК), определяемый путем ректификации. Лаб. дистилляцию широко применяют и как метод получения узких фракций нефти для решения исследоват. задач. [c.88]

    Применение СД процессов. К достоинствам этих процессов можно отнести сравнительно высокий равновесный коэф. разделения возможность в случае использования газовых смесей исключить испарение р-рителей (в отличие от абсорбции и ректификации) меньшая рабочая т-ра (чем при дистилляции) удобство управления процессом нанесения покрьггий возможность получать целевые продукты сразу в товарной форме (дисперсные частицы, монокристаллы, твердые пленки), высокочистые материалы, композиции несплавляемых компонентов (нитевидные кристаллы из неметаллов в металлич. матрице), тонкие и сверхтонкие порошки металлов, их оксидов. Благодаря этим и др. достоинствам СД процессы нашли широкое распространение (особенно начиная с 70-х гг.) в разл. областях науки и техники. [c.450]

    Установки со стационарными адсорберами имеют ряд существенных недостатков периодичность процесса, неполная отработка адсорбционной емкости адсорбента, значительная площадь, занимаемая оборудованием, трудность автоматизации и управления процессом. Эти недостатки побудили искать новые конструктивные решения. В период 1946—1955 гг. в США (Берг), Советском Союзе (Кельцев, Платонов), Венгерской Народной Республике (Бенедек, Сепеши) был разработан непрерывный метод разделения газовых смесей в движущемся слое адсорбента. При этом были учтены принципы абсорбционных и ректификационных установок, но четкость разделения усиливалась высокими избирательными свойствами адсорбента. На установках с движущимся слоем удалось не только решить задачу выделения суммы компонентов из газового потока, но и разделить их непосредственно в адсорбционной колонне, получив товарные продукты. Как правило, установки с движущимся слоем рекомендуются для работы под повышенным давлением (5—20 кгс/см ), что позволяет увеличить пропускную способность установок по газу. [c.18]

    Найденко В. В. Применение математических методов и ЭВМ для оптимизации и управления процессами разделения суспензий в гидроциклонах. Горький, Волго-Вятское книжное издательство, 1976, 287 с. [c.333]

    Применение ЭВМ для управления процессом экструзии на первый план выдвигает вопросы автоматического определения важнейших свойств получаемого экструдата и определяющих их технологических параметров. Поскольку процесс экструзионного формования ПВХ может быгь разделен на три стадии - пластикация композиций, формование экструдата и его охлаждение, то контроль процесса должен осуществляться на всех трех стадиях и рассматриваться как система со многими переменными, к которым можно отнести производительность, температуру, давление и вязкость перерабатываемого материала. Указанные параметры зависят от таких регулируемых величин, как количество тепла, подводимого к цилиндру, силы трения, скорости вращения шнека. На регулируемые переменные влияют гак называемые нарушаемые переменные колебание мощности, температура окружающей среды, изменение свойств перерабатываемого материала. Управление скоростью шнека осуществляется путем регулирования частоты вращения двигателя, а контроль его температуры особенно необходим в экструдерах с большим диаметром червяка. [c.251]

    По цели хроматографирования выделяют аналитическую хроматографию (качественньш и количественный анализ) препаративную хроматографию (для получения веществ в чистом виде, для концентрирования и выделения веществ) промыщленную (производственную) хроматографию для автоматического управления процессом (при этом целевой продукт поступает в датчик) [Основы ана-литическлй химии. Кн. 1. Общие вопросы. Методы разделения. 2-е изд., перераб. и доп. / Под ред. акад. Ю.А. Золотова М. Высщая щкола, 2000. 351 с.] [c.177]

    Микропроцессор (МП) - программноуправляемое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное в виде одной (или нескольких) большой интегральной схемы (БИС). Возможности однокристальных микропроцессоров определяются уровнем развития микроэлектронной технологии. Для увеличения производительности процессоров, иногда используют секционные многокристальные микропроцессоры. Многокристальные МП получаются в том случае, когда производится разделение логической схемы процессора на отдельные функционально законченные части, каждая из которых реализуется в виде отдельной интегральной схемы. [c.142]

    Рассматриваемый метод довольно универсален. Его можно применять как для фракционирования различных расплавов, так и для очистки веществ перекристаллизацией их из раствора. В одной и той же установке можно осуществлять однократный и многостуненчатый процесс разделения смесей с различными температурами кристаллизации. При этом, варьируя число ступеней, можно добиваться высоких коэффициентов извлечения целевых компонентов, а также высокой степени их очистки от примесей. Так как установка состоит в основном из теплообменных аппаратов, емкостного оборудования и насосов, то она обладает высокой надежностью и безопасностью. Все операцип могут быть полностью автоматизированы. Управление процесса осуществляют по заранее заданной программе с использованием миникомпьютера. Подобные установки требуют относительно низких капитальных затрат [195, 210, 211]. [c.172]

    Такие локальные сети можно часто найти во многих индустриальных, торговых и университетских центрах. Область применения локальных систем — от простых систем с разделением времени до сложных систем баз данных, управляющих информационных систем, систем дистанционной обработки запросов, управления процессами и распределенной обра- [c.482]

    В комплект оборудования для осветления сточных вод и фугата бурового раствора входят четыре центробежных насоса, воздуходувка с электродвигателем мощностью около 5 Л.С., один винтовой и два диафрагменных дозировочных насоса, две емкости объемом 4,5 м (для растворов коагулянта и флокулянта) с аэраторами, две емкости объемом 6 м с механическими перемешивателями (для обработки бурового раствора флокулянтом) > смесители для приготовления рабочих растворов флокулянта и коагулянта, а также запасная емкость. Управление процессом осуществляется с пульта дистанционного уравнения.Т ля разделения бурового раствора на фазы и обезвоживания щлама используется центрифуга модели ДЕ-1, имеющая барабан размером 35x1219 мм приводная мощность ее — 50 л.с. частота вращения ротора — 1000+ 3250 мин производительность — 9,7 л/с. [c.354]

    Процесс разделения веществ, образующих системы с неограниченной растворимостью в твердом состоянии, наиболее подробно изучен в [22-26]. Теоретически обосновано и экспериментально доказано, что эффект разделения достигается в узкой зоне, в которой происходит многократная перекристаллизация твердой фазы. В этой области при правщи>ном управлении процессом возникает скачок концентраций и температур. При выходе колонны на стационарный режим в предполагаемой зоне скачка наблюдается резкий рост градиента температуры. При этом колонна делится на две части, причем верхняя зона для нижней является кристаллизатором, а нижняя для верхней — плавителем. Местоположение скачка по высоте колонны определяется по исходной концентрации разделяемой смеси. Экспериментально установлено, что ниже зоны резкого изменения температуры и концентрации возникает некоторое переохлаждение расплава относительно равновесной температуры, которое увеличивается по мере приближения к зоне скачка. В свою очередь вьпие зоны скачка происходит некоторый перегрев расплава. Наличие межфазных и продольных градиентов температуры приводит к значительной интенсификации процесса массообмена. Согласно [22, 23], при объемной доле твердой фазы 0,6-0,8 и числах Ке = 1 высота единицы переноса сопоставима с размером кристалла. Такая эффективность процесса достш-ается за счет многократной перекристаллизации. Экспериментально установлено, что поступающие сверху кристаллы на подходе к зоне скачка расплавляются, а поднимающаяся жидкость кристаллизуется. Кристаллы смесей, образующих твердые растворы, из-за меньшей температурной разницы между температурами ликвидуса и соли- [c.310]


Смотреть страницы где упоминается термин Разделение управление процессом: [c.139]    [c.9]    [c.137]    [c.155]    [c.425]    [c.145]    [c.6]    [c.188]    [c.191]   
Подготовка сырья для нефтехимии (1966) -- [ c.142 , c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Виды разделения труда в процессе управления производством

Профессионально квалификационное разделение труда в процессе управления

Севрюков.к задаче оптимального управления процессом центробежного разделения микробиологических суспензий

Управление процессом



© 2025 chem21.info Реклама на сайте