Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрометры растровые

    Этот метод дает возможность быстро получить качественную картину распределения отдельных элементов по поверхности шлифа. Принцип растрового микроанализатора [14—16] заключается в следующем. Электронный зонд сканирует по небольшому участку на поверхности образца синхронно с лучом, двигающимся по экрану катодно-лучевой трубки регистрирующего блока. Яркость луча на экране модулируется сигналом, приходящим с рентгеновского спектрометра, регистрирующего линию выбранного элемента. На экране трубки получается видимое изображение распределения отдельных элементов по поверхности образца в зависимости от настройки спектрометра на регистрацию того или иного элемента. Кроме того, такие приборы дают картины поверхности шлифа в отраженных или проходящих электронах, работая как растровые электронные микроскопы. [c.63]


Рис. 51.1. Оптическая схема растрового спектрометра Жирара Рис. 51.1. <a href="/info/196341">Оптическая схема</a> растрового спектрометра Жирара
    НИИ кристалл-дифракционного спектрометра, где можно реализовать преимущества высокой скорости счета в сочетании с высоким разрещением по энергии. Ситуация, однако, отлична при исследовании тонких пленок и биологических средств, где возможно пространственное разрещение, равное или даже меньще толщины пленки. В этом случае низкий выход рентгеновского излучения влечет за собой необходимость иметь детектор с высокой как геометрической, так и общей квантовой эффективностью, характерной для полупроводниковых детекторов. Именно по этой причине они успешно применяются как в растровых, так и в аналитических электронных микроскопах. [c.264]

    По-видимому, наиболее целесообразно использовать для установления надмолекулярной структуры полимеров совокупность методов. Например, с помощью установки, состоящей из электронного растрового микроскопа и рентгеновского спектрометра, для смесей типичных промышленных каучуков были идентифицированы составляющие, включения, наслоения на поверхности материала, а также исследованы свойства на границе раздела различных веществ, в том числе каучука с металлами и текстилем [16]. [c.359]

    Растровые спектрометры Спектрометры сисам [c.211]

    В книге изложена современная теория спектральных приборов. Помимо известных призменных, дифракционных и интерференционных приборов рассмотрены новейшие типы сверх-светосильных спектрометров, основанные на интерференционной и растровой модуляциях светового потока. Рассмотрены оптимальные условия работы приборов. Подробно описаны и проанализированы существующие конструкции, приведен справочный материал о наиболее распространенных отечественных и зарубежных приборах. [c.2]

    В последнее время появились приборы, в которых пространственное разделение излучения по длинам волн дополняется селективной модуляцией. Оптической частью этих приборов являются интерференционные или растровые модуляторы. Сюда можно отнести и фурье-спектрометры, к которым понятие моно-или полихроматора вообще неприменимо. [c.16]

    Растровый спектрометр Жирара [c.17]


    Селективная модуляция применяется также давно с целью устранения влияния коротковолнового излучения на запись спектров в средней и дальней инфракрасных областях, однако широкое распространение этот вид модуляции получил только в последние годы в связи с появлением и развитием двух новых, перспективных, направлений в спектральном приборостроении — интерференционной и растровой спектрометрии. В интерференционных спектрометрах (сисамы и фурье-спектрометры) модуляция светового потока происходит в плоскости входного зрачка (обычное место установки диспергирующего элемента) в этой плоскости формируются светлые и темные полосы интерференции, вызывающие при перемещении в ней изменение светового потока. В растровых спектрометрах (типа прибора Жирара) модуляция потока происходит в плоскости выходной диафрагмы, на которую проектируется идентичное ей изображение входной диафрагмы, в результате чего в фокальной плоскости прибора образуются полосы муара, вызывающие при перемещении вдоль плоскости выходной диафрагмы изменение светового потока. [c.329]

    Принципы растровой модуляции. В последние годы появился принципиально новый тип спектрометра, основанный на растровой модуляции светового пучка. По конструкции это обычный классический спектрометр, во входном и выходном коллиматорах которого щели заменены растрами, представляющими собою прозрачные и непрозрачные полосы, штрихи или точки выходной растр является точной копией изображения входного растра со всеми свойственными этому изображению искажениями (искривлением спектра, аберрациями, дифракцией, дефектами изготовления и сборки оптики). При точном совмещении изображения входного растра с выходным, световой поток, падающий на фотоприемник, достигнет максимальной величины. При небольшом смещении изображения световой поток резко падает и при дальнейшем смещении меняется уже незначительно, образуя (при некоторых условиях) небольшие побочные максимумы. Точное совмещение изображения входного растра с выходным растром имеет место только для определенной длины световой волны на этом и основана селективная модуляция светового пучка, осуществляемая небольшими периодическими перемещениями изображения входного растра. При значительных размерах растра (в направлении дисперсии прибора) на фотоприемник попадает излучение, находящееся в широком спектральном интервале однако амплитуда модуляции этого излучения мала, и оно создает только большую засветку фотоприемника постоянным световым потоком, наподобие того, как это имеет место в случае сисама. [c.360]

    Разрешающая сила растрового спектрометра. Определим разрешающую силу спектрометра с растром [c.364]

    При определении разрешающей силы растрового спектрометра принимаем для простоты за предел разрешения полуширину аппаратной функции. [c.366]

    Здесь обращает на себя внимание независимость разрешающей силы растрового спектрометра от разрешающей силы его диспергирующего элемента, определяемой световым отверстием этого элемента. Однако эта независимость только кажущаяся. При малых размерах диспергирующего элемента дифракция исказит изображение входного растра, и реальная разрешающая сила прибора может оказаться значительно меньшей, чем рассчитанная по формуле (49.18) без учета размеров диспергирующего элемента. Наибольшим искажениям подвергнутся изображения наиболее узких полос растра. Они окажутся на пределе разрешения, когда ширина темной полосы растра будет равна дифракционной полуширине бх изображения точки. Расстояние между серединами двух соседних светлых полос на краю растра равно приближенно сумме ширин двух соседних (светлой и темной) полос. Приравняем это расстояние величине 2Ьх. Тогда [c.367]

    Растровый спектрометр соединяет в себе простоту классического спектрометра с высокой светосилой сисама. [c.368]

    Растры второго типа. Перейдем к растровым спектрометрам второго типа с хаотическим распределением световых отверстий растра. Здесь полосы муара и связанные с ними побочные максимумы в принципе отсутствуют. При совпадении изображения входного растра с выходным световой поток принимает максимальное значение. При взаимном смещении растров на величину I, равную щирине наибольшего из световых отверстий растра, взятой в направлении дисперсии прибора, количество совпадающих отверстий обоих растров определится законом вероятности. Величина I вследствие этого является линейным пределом разрешения прибора. Отсюда следует также, что величину / для всех отверстий растра нужно сделать одинаковой в том случае, когда световые отверстия имеют форму штрихов или полос, их следует расположить перпендикулярно направлению дисперсии прибора. [c.371]

Рис. 50.2. Аппаратная функция растрового спектрометра с хаотическим распределением полос растра без учета дифракции Рис. 50.2. <a href="/info/147230">Аппаратная функция</a> растрового спектрометра с <a href="/info/391358">хаотическим распределением</a> полос растра без учета дифракции

    На этот фон накладываются обычные дифракционные побочные максимумы. Аппаратная функция растрового спектрометра этого типа изображена на рис. 50.2. [c.372]

    Величина I является линейным пределом разрешения растрового спектрометра. Его разрешающая сила равна [c.372]

    У растрового спектрометра этого типа остается в силе все сказанное выше относительно геометрического фактора класси- [c.372]

Рис. 51.2. Спектрограммы, записанные на растровом У спектрометре Жирара а — спектр поглощения метана б — спектр поглощения углекислого газа в — спектр излучения углекислого газа в пламени горелки Мекера Рис. 51.2. Спектрограммы, записанные на растровом У <a href="/info/449839">спектрометре Жирара</a> а — <a href="/info/1611403">спектр поглощения метана</a> б — спектр <a href="/info/619058">поглощения углекислого газа</a> в — <a href="/info/3121">спектр излучения</a> <a href="/info/66542">углекислого газа</a> в <a href="/info/379390">пламени горелки</a> Мекера
    Рентгеноспектральный микроанализ основан на возбуждении электронным зондом характеристич. рентгеновского излучения исследуемого образца (см. Рентгеновская спектроскопия). Рентгеновские микроанализаторы создают на основе просвечивающих и растровых электронных микроскопов. Они состоят из электронной пушки с системой линз для формирования электронного зонда, рентгеновского спектрометра, к-рый разлагает излучение в спектр и преобразует его в электрич. сигналы, и регистрирующей системы. В приборе поддерживается высокий вакуум. По спектру характеристич. рентгеновского излучения определяют атомные номера элементов, а по интенсивности спектральных линий — их концентрации. Метод примен. для качеств. и количеств, определения всех хим. элементов, начиная с В абсолютные и относит, пределы обнаружения соотв. 10" —10 г и 10 —10 %. Относит, стандартное отклонение при количеств, анализе 0,02—0,05. Объем образца, к-рый можно анализировать данным методом, зависит гл. оор. от энергии первичных электронов [1—50 кэВ, или (0,16—8)-10 Дж], плотности образца, степени поглощения излучения и составляет 0,1—10 мкм . Рентгеноспектральный анализ примеп. для определения состава микровключений, распределения элементов в тонких слоях и фазового анализа твердых в-в, [c.701]

    К известным ранее способам разложения излучения в спектр (рефракция, дифракция, интерференция) добавился новый способ-модуляция. На этой основе разрабатываются совершенно новые типы спектральных приборов — с п е к т р о м ет р ы с интерференционно-селективной амплитудной модуляцией излучения (сисамы), растровые спектрометры, мультиплекс-спектрометры, Адамар-1 [c.72]

    Многоканальные фотоэлектрические спектрометры (каантометры) широка применяют а промышленности для экспрессного и маркировочного анализа металлов и сплавов. Типичная функциональная схема квантометра показана на рис. 3.31, Спектральный прибор представляет собой полихроматор, в котором входная ш,ель, вогнутая дифракционная решетка и передвижные выходные щели расположены по кругу Роуланда. Излучение источника света, работающего в атмосфере инертного газа, растровым конденсором направляется через входную щель на дифракционную решетку с радиусом кривизны 1—2 м и числом штрихов до 2400 на 1 мм. Дифракционная решетка разла- гает излучение в спектр и фокусирует его по дуге АВ. Выходные щели выделяют из этого спектра нужные линии. За выходными щелями расположены зеркала, направляющие выделенные излучения на фотокатоды фотоумножителей. [c.133]

    И-500 (Япония). Просвечивающий электронный микроскоп обеспечивает предельное разрешение 0,14 нм при изображении плоскости кристаллической решетки и 0,3 нм по точкам имеет увсличе 1ие от 100 до 800 000 раз, работает при ускоряющем напряжении до 125 кВ. У микроскопа имеются приставки для охлаждения и нагревания до 800°С. Вместе с приставкой HSE-2 микроскоп мокнет работать и как сканирующий, при этом достигается разрешение в режиме растрового просвечивания 3 нм и режиме вторичной электронной эмиссии 7 нм. При использовании микроскопа совместно с многими рентгеновскими спектрометрами можно проводить микроанализ. [c.147]

    Stereos an 180 (Англия). Растровый электронный микроскоп работает при ускоряющих напряжениях ло 60 кВ, при этом достигается предельное разрешение 7 нм в растрово-просвечивающем режиме и 10 нм в режиме вторичной электронной эмиссии. У микроскопа имеются приставки для нагревания до 400°С и деформации образца. Микроскоп может использоваться вместе со спектрометром. [c.154]

    В первой книге монографии известных американских специалистов изложены стандартные методы растровой электронной микроскопии и некоторые аспекты рентгеновского микроанализа. Рассмотрены особенности электронной оитики приборов, взаимодействие электронов с твердым телом, теория формирования изображения в растровом микроскопе, а также разрешение, информативность режимов вторичных и отраженных электронов, рентгеновская спектрометрия с дисперсией по энергии и длине волны и качественный рентгеновский микроанализ. [c.4]

    А при 30 кВ. Эта величина тока значительно превышает минимальный ток (1—5-10 А), который обычно необходим для проведения удовлетворительного количественного рентгеновского анализа с кристалл-дифракционным спектрометром. Согласно рис. 2.1, а, работая с вольфрамовым катодом, можно производить рентгеновский микроанализ с минимальным размером зонда порядка 0,2 мкм (2000 А). Такой размер пятна значительно меньше диаметра области-возбуждения рентгеновского излучения в образце (1 мкм, см. гл. 3). Малый размер пучка такого порядка позволяет оператору легко получать электронные растровые изображения анализируемых областей без изменения рабочих условий. Пушка с катодом из ЬаВе дает дополнительные преимущества в режиме микроанализа, потому что она позволяет исследователю проводить надежный рентгеновский микроанализ с электронным зондом размером менее 0,1 мкм. Следует отметить, что в стандартном РЭМ размеры пучка составляют примерно 10 нм (100 А) (рис. 2.1,6). При этом ток зонда для катодов из У или ЬаВе составляет менее Ю °А и слишком мал для проведения рентгеновского анализа кристалл-дифракционным спектрометром. Однако это как раз тот диапазон значения токов, где возможно проведение рентгеновского анализа с дисперсией по энергии (см. гл. 5). [c.15]

    Метод получения изображения рентгеновском излучении при сканировании по площади представляет по существу растровый рентгеновский микроскоп. Усиленный сигнал от детекторной системы—спектрометра с дисперсией по энергии или кристалл-дифракционного спектрометра — используется для модуляции яркости электронно-лучевой трубки (ЭЛТ), которая сканируется синхронно с электронным пучком. Таким образом, изображение на экране ЭЛТ получают за счет изменения интенсивности рентгеновского излучения с поверхности образца. Здесь используется такая же система развертки с регулировкой увеличения и такой же усилитель, что и в растровом электронном микроскопе (гл. 4). Электронный пучок может сканировать по линии в направлениях X или У и давать распределение рентгеновского излучения по линии. Пример типичного сканирования по линии для Со и Сг по поверхности окисленного высокотемпературного сплава приведен на рис. 5.14 (гл. 5). Электронный пучок можно, конечно, развертывать и по площади н получать изображение в рентгеновских лучах. Изображение в рент-геповски.х лучах при сканировании по площади может содержать тона от черного до белого в зависимости от условий эксперимента. Места с высокой концентрацией исследуемого элемента в пределах области сканирования будут на изображении почти белыми, серыми, когда концентрация элемента ниже, и черными всюду, где элемент отсутствует. Пример, иллюстрирующий результаты исследования руды, приведен на рис. 6.15. [c.296]

    Анализ образцов в виде тонкой фольги представляет собой простейшую аналитическую проблему. До некоторой степени микрорентгеноспектральный анализ образцов в виде тонкой фольги проще, чем анализ плоских массивных образцов. Когда образец очень тонкий, упругое рассеяние и потери энергии уменьшаются до такой степени, что эффекты атомного номера исключаются или в лучшем случае оказываются второстепенными. Поскольку сечения как упругого, так и неупругого рассеяния уменьшаются с увеличением энергии пучка, образцы в виде тонкой фольги лучше всего анализировать с помощью аналитического электронного микроскопа (АЭМ), который обычно представляет собой комбинацию просвечивающего и просвечивающего растрового электронных микроскопов, работающих при ускоряющем напряжении 100 кВ и снабженных рентгеновским спектрометром с дисперсией по энергии. В случае отсутствия АЭМ можно использовать РЭМ или рентгеновский микроанализатор, работающий при ускоряющем напряжении 40—60 кВ, хотя роль эффектов атомного номера в зависимости от состава фольги или ее толщины может стать значительной. Как поглощение, так и флуоресценция также становятся незначительными для тонкой фольги в зависимости только от толщины фольги и независимо от энергии пучка. Таким образом, при анализе образцов в виде тонкой фольги можно пренебречь всеми матричными эффектами — влиянием атомного номера, поглощением и флуоресценцией, па которые должна вводиться поправка при анализе массивных образцов. В результате анализ тонкой фольги можно провести ири помощи простого метода относительной чувствительности, [169, 170]. [c.57]

    Можно отметить ряд проблем, связанных с растровыми спектрометрами. Во-первых, входной и выходной растры должны быть изготовлены с высокой точностью, но не совсем идентичными в расчет необходимо принять искажения в спектрометре. Во-вторых, некоторые кюветы и приставки (например, многоходовые газовые кюветы или микрокюветы) могут создавать неоднородность в световом пучке и уширять аппаратную функцию, в результате чего происходит потеря спектральной чистоты. В-третьих, из-за большого количества немодули-рованного излучения, достигающего приемника, любые колебания, особенно в области частот колебаний растра, приводят к шумам. Теорйя, преимущества, приложения и проблемы растровых спектрометров обсуждены Морэ-Бэйли [62, 1, 2, 10 ]. [c.30]

    Кинетич. энергию Оже-электронов Якия измеряют с по лощыо электронных спектрометров. В приборе поддерживается вакуум 10 —10 Па. Для локального анализа примен. растровый Оже-микрозонд с разрешением по пов-сги 50—200 нм. Регистрируют ф-цию ртспределения Оже-элекгронов по энергиям NiExm) или ее производную [c.397]

    Идеи выделения излучения модуляцией успешно развивались во Франции П. Жакино и П. Конном, которые создали новые типы спектральных приборов, основанные на интерференционной модуляции светового пучка и получившие название фурье-спектрометра и сисама (спектрометр с интерференционной селективной амплитудной модуляцией). А. Жирар на базе обычного спектрометра создал новый тип спектрального прибора — растровый спектрометр. Можно надеяться, что разработка и усовершенствование этих приборов нового типа позволит решить задачу оптимизации спектральных приборов с фотоэлектрической регистрацией спектра. [c.11]

    При колебаниях входного растра с той же амплитудой относительно других значений У аппаратной функции растрового спектрометра, пропорциональной Фпер, появятся максимумы, причем в отличие от сисама ее минимумы никогда не принимают значений, равных нулю. При разложении Ф р в ряд Фурье появятся гармоники с частотами, кратными частоте колебаний растра, однако их нетрудно устранить выбором полосы пропускания усилителя фототока. Величина побочных максимумов Ф р будет определяться значениями Ф гп,п и Ф шах. поэтому для снижения максимумов Фпер целесообразно применение аподизации подобно тому, как это имело место в сисаме. [c.366]

    Растровый спектрометр, построенный А. Жираром [51.1 — 51.5], представляет собой обычный дифракционный спектрометр (схема Литтрова), в котором входная и выходная щели заменены растрами — системами прозрачных и непрозрачных полос, ограниченных равноотстоящими гиперболами. Оптическая схема прибора представлена на рис. 51.1. Излучение, идущее от источника света 1, зеркальным модулятором 2 делится на два пучка, которые после отражения от зеркал 3 и4 поочередно попадают на внешнюю и внутреннюю поверхности входного зеркального растра 5. Затем пучки падают на внеосевое параболическое зеркало 6, разлагаются в спектр дифракционной решеткой 7 и фокусируются зеркалом 6 на поверхности выходного растра 8, проектируя на него поочередно два изображения растра 5 (в проходящем и отраженном свете), являющиеся дополнительными друг к другу — светлым полосам одного изображения соответствуют темные полосы второго, и наоборот. [c.373]

    Растровый спектрометр Хюэ, выпускаемый фирмой Сосьете Женераль д Оптик является модернизацией одного из первых приборов Жирара. Спектрометр работает в области 2—ЗЪмк и обладает усилением по световому потоку, равным 300. Прибор построен по схеме Литтрова с фокусным расстоянием 2 м гиперболические растры имеют размеры 30x30 мм. [c.375]


Смотреть страницы где упоминается термин Спектрометры растровые: [c.355]    [c.611]    [c.7]    [c.314]    [c.29]    [c.369]    [c.29]    [c.350]    [c.361]    [c.367]    [c.368]    [c.373]   
Прикладная ИК-спектроскопия (1982) -- [ c.29 ]

Прикладная ИК-спектроскопия Основы, техника, аналитическое применение (1982) -- [ c.29 ]




ПОИСК







© 2025 chem21.info Реклама на сайте