Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы рентгеновский анализ

    Легко установить, что векториальность свойств кристаллов не обусловливается той или иной геометрической формой кристалла. Так, шар, выточенный из слюды, несмотря на полную симметричность его формы, сохраняет анизотропию, и наоборот, какой бы формы многогранник ни был отлит из обычного стекла, оно не приобретает от этого векториальности свойств. Как геометрическая форма, так и анизотропия кристаллов являются следствием особенности внутреннего строения кристаллов. Частицы, из которых состоит кристалл (молекулы, атомы или ноны), не беспорядочно, а закономерным образом расположены в пространстве. Упорядоченность расположения частиц была подтверждена экспериментально, когда после 1911 г. в результате разработки метода рентгеновского анализа открылась возможность определять расстояния между частицами в кристаллах на основе опытных данных. [c.123]


    Исследование природы химической связи и строения молекул развивалось параллельно с изучение. строения атома. К началу двадцатых годов текущего столетия Косселем и Льюисом были разработаны основы электронной теории химической связи. Гейтлером и Лондоном (1927) была развита квантовомеханическая теория химической связи. Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. Основываясь на крупнейших открытиях физики в области строения атомов и используя теоретические методы квантовой механики и статистической физики, а также новые экспериментальные методы, такие как рентгеновский анализ, спектроскопия, масс-спектроскопия, магнитные методы, метод меченых атомов и другие, физики и физи-ко-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.8]

    Рентгеноструктурный анализ. Метод исследования с помощью дифракции рентгеновских лучей. За 65 лет, прошедших со времени открытия дифракции рентгеновских лучей в кристаллах, рентгеноструктурный анализ превратился в массовый метод исследования структуры неорганических кристаллов и полимерных веществ [310—312]. Применительно к исследованию асфальтенов он начал использоваться последние 20 лет. [c.154]

    В общем курсе кристаллохимии рассматриваются методы исследования структуры кристаллов — рентгеноструктурный анализ, нейтронография и, частично, электронография. Однако не дается изложение специального метода рентгеноструктурного анализа, который используется для определения абсолютной конфигурации молекул. Такая задача возникает при изучении оптически активных веществ. В гл. VIH, IX и X представлены оптические методы исследования оптически активных веществ. Особенность этих методов состоит в том, что легко определить с их помощью различие в абсолютной конфигурации молекул, но нет возможности прямого отнесения экспериментальных данных по ДОВ или КД к определенному энантиомеру. Именно эту проблему и решает метод аномального рассеяния рентгеновских лучей. [c.216]

    Наиболее полные идентификационные характеристики при исследовании кристаллогидратов получают при применении дифференциально-термического анализа, а в случае достаточно крупных кристаллов — также рентгеновского анализа. Формы связи воды в кристаллах гидратов идентифицируются методом инфракрасной спектроскопии, а форма и размеры кристаллов — методами электронной и оптической микроскопии. [c.273]


    Для исследования строения твердых тел применяются рентгеноструктурный, электронномикроскопический, кристаллооптический, металлографический, петрографический и другие методы. Особенно большое значение имеет рентгенографический и электронный анализы кристаллов. Рентгеновские лучи широко применяются для выяснения строения кристаллических решеток и их деформации под влиянием внешних воздействий. За последнее десятилетие метод рентгеновского анализа все с большим успехом применяется также для изучения строения жидкостей, для определения структуры молекул и расстояний между атомами в молекуле. [c.56]

    В бинарном кристалле МХ межионное расстояние можно рассматривать как сумму радиусов аниона и. ... Определите радиус аниона в кристалле Ы1, в котором анионы настолько велики по сравнению с катионами, что соприкасаются друг с другом (рис. 4.1). (Методом рентгеновского анализа установлено, что межионное расстояние в равно 4,40 А.) [c.178]

    Применение рентгеновского анализа показало, что внутри жидкостей существует некоторая упорядоченность в расположении частиц так же и при температурах, удаленных от точки затвердевания. Однако если закономерное чередование частиц в твердых веществах имеет место во всем объеме кристалла ( дальний поря- [c.46]

    МЕТОДЫ РЕНТГЕНОВСКОГО АНАЛИЗА Дифракция рентгеновских лучей в кристаллах [c.99]

    Молекулярная биология изучает биологические структуры и их функции на молекулярном и атомном уровне. Как научное направление молекулярная биология начала развиваться в период 1930—1940 гг., когда были достигнуты успехи в понимании тонкой структуры и свойств небольших молекул благодаря применению спектральных и магнитных методов, в первую очередь дифракции рентгеновских лучей на кристаллах (рентгеноструктурный анализ) и дифракции электронов молекулами газа этим успехам способствовал и прогресс в теории, связанный с появлением квантовой механики. Первые рентгенограммы фибриллярных белков и целлюлозы были получены в 1918 г., кристаллов глобулярных белков —в 1934 г. но только много лет спустя удалось полностью расшифровать строение белковых молекул. [c.428]

    Симметрия К. проявляется не только в нх структуре и св-вах в реальном трехмерном пространстве, но также и при описании энергетич. спектра электронов кристалла, при анализе дифракции рентгеновских лучей и электронов в кристаллах в обратном пространстве и т. п. [c.537]

    Дифракционный рентгеноструктурный анализ может осуществляться двумя способами—на крупных кристаллах (монокристаллах) или порошкообразных (поликристаллических) образцах. Рассеиваемые от кристаллов рентгеновские лучи регистрируют на фотографической пластине либо каким-нибудь счетчиком, например сцин-тилляционным или счетчиком Гейгера. Дифракционная картина при рассеянии рентгеновских лучей на монокристалле (рис. 10.11) представляет собой совокупность пятен, возникающих в результате отражения лучей от различных плоскостей кристалла при его вращении относительно падающего пучка рентгеновских лучей. В отличие от этого в порошкообразном образце имеется множество кристалликов, ориентированных под всевозможными углами, и в результате отражения рентгеновских лучей от различных кристаллических плоскостей всех этих кристалликов возникает ряд конусообразных пучков рассеянных лучей. Для проведения рентгеноструктурного анализа достаточно использовать лишь неболь- [c.175]

    Теоретическая плотность природного фафита по данным рентгеновского анализа составляет 2,2-2,5 г/см. Искусственные фафиты из-за дефектов и пористости имеют более низкую плотность. Структура фафита определяет сильную анизотропию физико-химических свойств вдоль параллельных направлений к поверхности кристаллов. Реальные структуры фафитов отличаются от идеальных наличием в них дефектов различных типов. При нарушении порядка чередования сеток возникают дефекты упаковки слоев. При большом количестве дефектов возникает так называемая турбостратная структура. Атомы углерода в сетках при этом не занимают идеальных положений, а смешены относительно плоскости сетки. [c.8]

    Наиболее мощным инструментом является рентгеновский фазовый анализ, также требующий незначительных количеств вещества. Он позволяет определить, какие кристаллы синтезированы, если рентгеновские сведения об этих кристаллах уже имеются в литературе. Если получена смесь кристаллов разного состава, то рентгеновское исследование может дать ответ на вопрос, какие кристаллы присутствуют в смеси и даже приблизительно в каком соотношении. Рентгеновский анализ используется для определения структуры вещества. Он может указать на присутствие примеси в кристалле, состав которой, однако, должен устанавливаться другими методами. [c.157]

    По данным рентгеновского анализа кристаллов жирных кислот, поперечное сечение углеводородной цепи равно 18,4А , что соответствует гораздо более плотной упаковке цепей в кристалле, чем в конденсированной пленке на водной поверхности. Аналогичные данные получаются и в отношении соединений бензола, для которых в кристаллическом состоянии площадь кольца определяется в 21,5 вместо 24 А в пленке. Эти цифры дают объяснение высокого значения эквивалента упругости пара вещества в пленке (вычисление которого приведено на стр. 72) большие расстояния между молекулами в пленке так ослабляют силы межмолекулярного притяжения, что дезагрегирующие силы приобретают в пленке большее значение, нежели в кристалле. [c.76]


    Рентгеновский анализ показал, что кристаллы могут быть подразделены иа три важнейших класса. В первом из них, к которому относятся гомеополярные или ковалентные кристаллы, расположение атомов в точности такое, какого можно ожидать, предполагая, что они удерживаются в кристалле гомеополярными валентными связями. Так, например, в алмазе каждый углеродный атом окружен четырьмя другими, причем расположены они симметрично, а именно так, что линии, идущие от центров, образуют тетраэдрические углы. Ко второму классу относятся такие кри- [c.280]

    Характеристики глин, представляющих интерес для гончарного производства, более определяются физическими свойствами отдельных частичек глины (наиболее важными из которых являются размер, форма и природа поверхности), чем химическим составом. Почти несомненно, что пластические, глиноподобные, свойства не возникают в частичках с размерами свыше 10 л. Нижний предел более неопределенен, хотя имеются указания на наличие в глинах частичек, меньших 10 Ш[л. Частички более крупные, чем 10 л., рассматриваются обычно как загрязнения, наносы, песок и т. д. форму маленьких частичек, лежащих за пределами разрешающей силы микроскопа, трудно определить непосредственно, но большие частички представляются в виде плоских, пластинчатых кристаллов. На то, что даже мельчайшие частички являются пластинчатыми, указывает двойное лучепреломление их суспензий при вязком течении (стр. 145). Чистые глинистые минералы дают и рентгенограммы, характерные для кристаллических частичек. Таким образом, можно заключить, что глины состоят в основном из весьма тонких пластинчатых кристаллов. Современный рентгеновский анализ показал, что сами пластинки, вероятно, состоят из различных слоев окиси алюминия и кремнезема, связанных между собой кислородными мостиками. Химически связанная вода почти несомненно представлена гидроксильными группами и не освобождается до достижения высоких температур (рис. 1). Одновременно с удалением связанной воды кристаллическая решетка минеральной [c.448]

    Историю физической химии в XX веке нет возможности изложить в кратком очерке. Поэтому будет дана лишь обш,ая характеристика развития физической химии в XX веке. Если для XIX века было характерно изучение свойств веш,еств без учета структуры и свойств молекул, а также использование термодинамики, как основного теоретического метода, то в XX веке на первый план выступили исследования строения молекул и кристаллов и применение новых теоретических методов. Основываясь на крупнейших успехах физики в области строения атома и используя теоретические методы квантовой механики и статистической механики, а также новые экспериментальные методы (рентгеновский анализ, спектроскопия, масс-спектрометрия, магнитные методы и многие другие), физики и физико-хидшки добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.15]

    В результате применения рентгеновского анализа в работах В, И. Данилова и др. было установлено, что и в жидкостях при комнатных температурах может наблюдаться, некотор ая упорядочен н о с т ь в расположении частиц. Это явление было установлено при высоких температурах в стеклах (А. А. Лебедевым, 1921), а при комнатных температурах — в воде, бензоле, ртути и других жидкостях (принадлежащих к различным классам веществ). Имеются и другие наблюдения, подтверждающие ту или другую степень упорядоченности в расположении частиц, в особенности при температурах, не слишком отдаленных от температуры их отвердевания (А, 3. Голик и др.). Все это заставило в последнее время признать, что в подобных условиях внутреннее строение жидкостей оказывается более близким к строению кристаллов, чем к строению газов, и отличается от строения кристаллов главным образом тем, что упорядоченность расположения охватывает много меньшие элементы объема, чем в кристаллах (это называ10Т ближней упорядоченностью). [c.163]

    Весьма тонкий и надежный метод изменения межплоскост-ных расстояний в решетке монт-мориллонитовых кристаллов с помощью рентгеновского анализа был применен К. Норишем [96]. Однако этим методом не представляется возможным измерить толщины адсорбционных и диффузных слоев жидкости при набухании глинистых минералов как с подвижной кристаллической решеткой, так и с жесткой решеткой, например каолинитов, гидрослюд и др. В ряде технологических процессов (проводка скважин. [c.20]

    Еще при проведении первых исследований полимеров было известно, что как естественные, так и искусственные полимеры кристаллизуются [14а]. Рентгеновский анализ позволил раскрыть решеточную структуру и определить размеры единичной ячейки кристаллов полимера. До 1957 г. полагали, что кристаллиты — мицеллярного типа. Предполагалось, что типичная мицелла представляет собой пучок из нескольких сотен различных молекул, которые, покидая мицеллу и проходя аморфные области, хаотично соединяют мицеллы друг с другом. В 1957 г. Фишер [15], Келлер [16] и Тплл [17] независимо друг от друга открыли и предположили, что полимеры состоят из монокристаллических ламелл со сложенными цепями На рис. 2.2 показана электронная микрофотография пачки монокристаллов ПЭ [18], выращенной из разбавленного раствора, а на рис. 2.3 — укладка цепных молекул в подобных ламеллярных кристаллах. Здесь цепи ПЭ сложены (с поворотом цепи после каждой складки) в плоскости (ПО) ортором-бического кристалла ПЭ. Размеры единичной ячейки определены в работе [19] а = 0,74 нм, 6 = 0,493 нм, с = 0,353 нм (направление оси цепи). [c.28]

    Длины волн рентгеновских лучей имеют тот же порядок, что и расстояние между атомами или ионами в кристаллах и молекулах (10- см). Благодаря этому при дифракции рентгеновских лучей от граней кристалла можно обнаружить особенности в расположении частиц в кристалле, определить расстояние между ними. Существуют различные способы получения рентгенограмм. В основе всех методов рентгеновского анализа лежит дифракцион- [c.56]

    В отличие от анизотропных кристаллических тел жидкости аморфны и изотропны. Однако применение методов рентгеновского анализа позволило открыть вблизи температуры кристаллизации и в ряде жидкостей некоторую упорядоченность расположения молекул. В отдельных ультрамикроскопических участках объема жидкости обнаруживается упорядоченность в расположении молекул, меняющаяся как во времени, так и в пространстве. Это явление было установлено при высоких температура.х в стеклах, а при комнатных температурах — в воде, бензоле, ртути и других жидкостях. Этот факт позволяет признать, что при низких температурах внутреннее строение жидкостей ближе к стро-еьгйю кристаллов, чем газов. [c.66]

    Дефекты кристаллической структуры. По мере совершенствования методов изучения кристаллов (прецизионные методы рентгеновского анализа, микроскопия и электроноскопия) оказалось, что кристаллические тела не являются идеальными, а обладают рядом дефектов кристаллической структуры. Грубые дефекты кристаллической структуры, образующиеся при получении кристаллов, — поры, трещины мы не рассматриваем, так как они обычно получаются при нарушении технологии отливки или сварки металлов или при выращивании кристаллов из расплавов, растворов или из газовой фазы. Нарушения микроструктуры кристаллов обнаруживаются с большим трудом, но так как они сильно влияют на физические свойства твердых тел, то их изучение в настоящее время ведется весьма интенсивно. [c.110]

    В противоположность слабым, сильные электролиты отличаются тем, что в них практически нет недиссоци-ированных молекул, т.е. а=1. Кристаллы типичных сильных электролитов (например, Na l) построены полностью из ионов, упорядоченно расположенных в узлах пространственной решетки, как это показывает рентгеновский анализ, т. е. уже в твердом состоянии они ие содержат молекул. Ионы удерживаются в узлах решетки преимущественно благодаря электростатическим силам. При плавлении энергия теплового движения настолько увеличивается, что ионы приобретают высокую иодвижность, и такие расплавы проводят электрический ток. [c.111]

    А при 30 кВ. Эта величина тока значительно превышает минимальный ток (1—5-10 А), который обычно необходим для проведения удовлетворительного количественного рентгеновского анализа с кристалл-дифракционным спектрометром. Согласно рис. 2.1, а, работая с вольфрамовым катодом, можно производить рентгеновский микроанализ с минимальным размером зонда порядка 0,2 мкм (2000 А). Такой размер пятна значительно меньше диаметра области-возбуждения рентгеновского излучения в образце (1 мкм, см. гл. 3). Малый размер пучка такого порядка позволяет оператору легко получать электронные растровые изображения анализируемых областей без изменения рабочих условий. Пушка с катодом из ЬаВе дает дополнительные преимущества в режиме микроанализа, потому что она позволяет исследователю проводить надежный рентгеновский микроанализ с электронным зондом размером менее 0,1 мкм. Следует отметить, что в стандартном РЭМ размеры пучка составляют примерно 10 нм (100 А) (рис. 2.1,6). При этом ток зонда для катодов из У или ЬаВе составляет менее Ю °А и слишком мал для проведения рентгеновского анализа кристалл-дифракционным спектрометром. Однако это как раз тот диапазон значения токов, где возможно проведение рентгеновского анализа с дисперсией по энергии (см. гл. 5). [c.15]

    Существует некоторое расхонадение между значениями чпсла Авогадро, полученными различными методами. Первые три метода представляют только исторический интерес, а четвертый сейчас считается напболее точным. Его можно считать абсолютным методом, поскольку длину волны рентгеновских лучей можно пайти, измеряя углы отражения от кристаллов. Неполное соответствие между данными, приведенными для в табл. 2 и 3, связано с наличием дефектов кристаллических решеток. Решетки кальцита и алмаза содержат относительно немного дефектов, и поэтому сейчас в качестве наиболее достоверного используется значение ТУд, вычисленное из данных рентгеновского анализа этих кристаллов (Дю Монд и Ботман, 1936)  [c.28]

    В пятой главе приводится способ подготовки механически обработанных образцов и методы седиментационного и рентгеновского анализов. Частицы порошка в дезинтеграторе подвергаются действию нескольких мощных ударов и, согласно расчетам, покидают его рабочую камеру за время порядка 0,01 с. Образцы с различной продолжительностью механической обработки получены повторным пропусканием порошков через рабочую камеру. Образцы нумеровались так, что номер образца N (он равен кратности обработки) и продолжительность обработки I связаны соотношением I = 0,01-К. Седиментационным анализом на центрифугальном СВ-3 и фотоэлектрическом Ьито8е(1 седиментографах установлено, что для исследованных веществ процесс измельчения в дезинтеграторах и центробежных мельницах завершается практически сразу после однократной обработки, в результате которой размеры частиц уменьшаются для разных веществ в 100 - 300 раз. Наблюдаемые особенности измельчения указывают, что для всех исследованных кристаллов скорости соударений порядка 200 - 300 м/с достаточны для скоростного измельчения до размеров зерен [c.23]

    В шестой главе представлены результаты седиментационного и рентгеновского анализа подверженных обработке веществ с различным типом химической связи ионных кристаллов - хлоридов натрия и калия, ковалентного кристалла кремния, пероксидов кальция и бария, тройных металлооксидов. Для всех изученных кристаллов обнаружена немонотонная зависимость ширины линий от продолжительности обработки, причем отжиг обработанных образцов приводил к сужению линий и возврату их к значениям, соответствующим исходным образцам. Результаты расчетов показывают, что характер структурных изменений разных кристаллов при одних и тех же внешних воздействиях зависит от типа химической связи причем структурные изменения для однотипных кристаллов (пероксиды - ВаОг и СаОг или ионные кристаллы - Na l и КС1) одинаковые. [c.24]

    Уравнение (2) указывает на возможность определения межплоскост-ных расстояний в кристаллах, если известны длины волн рентгеновских лучей X, порядок отражения п и углы скольжения 0. Для первого отражения d=V2sin0i. После открытия Лауэ и вывода основной формулы рентгеновского анализа Бреггами и Вульфом последовало чрезвычайно быстрое развитие структурного анализа. С помощью рентгеновских лучей В. Г. и В. Л. Бреггам удалось определить межатомные расстояния в кристаллах и взаимное расположение атомов для целого ряда веществ, т. е. определить их кристаллическую структуру. Одной из первых была определена структура меди. [c.107]

    Отличительная морфологическая особенность кристаллов исследуемой фазы состоит в том, что они значительно тоньше и длиннее волокон фторрихтеритов, синтезированных в идентичных термодинамических условиях. На рис. 44, а представлен общий вид микромонокристаллов фторкупфферита. С помощью метода платиноугольных реплик удалось отчетливо наблюдать грани этих лентовидных кристаллов (рис. 44,6). Индексы граней легко установить, если в соответствии с данными рентгеновского анализа принять, что наиболее развиты грани (ПО) и (100). С помощью метода микродифракции удалось установить, что амфиболовые кристаллы волокнистой щетки , синтезированной при 900—950 °С, имеют моноклинную ячейку с пространственной группой Р 2]/т. [c.125]

    Изучение высокотемпературных фаз рентгеновским методом показало, что при температуре выше 925 С образуются кристаллы со структурой типа шпинели с хорошо выраженной ориентировкой. Эта фаза представляет собой алюмокремневую шпинель с незанятыми местами катионов, в результате разрушения которой образуется муллит. По мере того как метакаолин переходит в щпинелевую фазу и затем в муллит, происходит выделение кремнезема. Рентгеновским анализом в интервале температур 1200—1400 °С отмечается изменение параметров муллита при 1400 °С состав муллита приближается к 3AI2O3 28Юг. [c.144]

    В 1939 г. профессор М. В. Траверс из университетского колледжа в Лондоне в статье о работах Хэннея [3] отметил его талант экспериментатора и многие научные достижения. Интерес к работам Хэннея вновь возник в 1943 г., когда Ф. А. Баннистер и Кэтлин Лонсдейл [4] увидели в минералогической коллекции Британского музея экспозицию, которая называлась Алмазы Хэннея , и провели рентгеновский анализ образцов. Одиннадцать из двенадцати кристаллов оказались алмазами. Это открытие стимулировало появление серии статей в журнале Нейче таких авторов, как Траверс [5], Деш [c.65]

    Такая интерпретация структуры аморфных твердых тел подтверждается рентгеновским анализом. Явление отклонения световых лучей при прохождении через так называемые диффракционнгле решетки давно известно. Пучок лучей видимого света, проходя через стеклянную нластинк ", на которую нанесено большое число параллельных линий, отклоняется от своего направления па угол, длина которого зависит от расстояния между линиями и от длины световой волны. Изучение этого явления привело к выводу, что эффект диффракции зависит от четырех факторов во-первых, свет доля ен проходить через среду, перемежающиеся зоны которой сильно отличаются но их способности к пропусканию света далее, эти зоны должны быть приблизительно параллельны, находиться приблизительно на равном расстоянии друг от друга, и это расстояние но порядку величины должно соответствовать длине волны данного светового луча. Если принять во внимание правильное расположение атомов в кристалле, то станет ясно, что последние представляют собой ряд диффракционных решеток, расположенных одна позади другой. Здесь, конечно, правильность расположения гораздо больше, чем в любой решетке, нанесенной на поверхность стекла. Поэтому можно ожидать, что такой кристалл и будет действовать как решетка, если удастся найти световые лучи с соответствующей длиной волны, много меньшей, чем длины волн видимого света. Этому требованию вполне отвечают рентгеновские лучи в определенной области длины их волн. Применение этих лучей создает возможность количественного определения расположения атомов в структуре кристаллов. [c.280]

    Laue камера Лауэ (для рентгеновского анализа кристаллов) [c.87]


Смотреть страницы где упоминается термин Кристаллы рентгеновский анализ: [c.343]    [c.8]    [c.9]    [c.445]    [c.446]    [c.123]    [c.65]    [c.131]    [c.131]    [c.171]   
Химия коллоидных и аморфных веществ (1948) -- [ c.280 , c.281 ]

Курс физической химии Издание 3 (1975) -- [ c.169 ]




ПОИСК







© 2025 chem21.info Реклама на сайте