Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Первое начало термодинамики и его применение

    А. ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ И ЕГО ПРИМЕНЕНИЕ [c.84]

    Первое начало термодинамики есть закон сохранения энергии изолированной системы. Оно не выведено из каких-либо более простых положений, а является обобщением многочисленных непротиворечащих ему наблюдений. Его следует рассматривать как постулат, справедливый для любой изолированной системы. При применении первого начала к закрытым системам подразумевается, что после переноса теплоты все процессы в закрытой системе идут, как в изолированной. (Обмен энергией с окружающей средой можно считать мгновенным время в термодинамических процессах исключено.) [c.24]


    Применение первого начала термодинамики к химическим процессам. Закон Гесса. Все химические процессы протекают с выделением или поглощением теплоты. В технологии вяжущих веществ важнейшая роль отводится составлению тепловых балансов химических реакций и проведению теплотехнических расчетов. Основой при этом служит закон Гесса, открытый в 1840 г., который можно рассматривать как частный случай первого начала термодинамики. [c.39]

    Первый закон, или первое начало, термодинамики — это закон сохранения и превращения энергии в применении к тепловым процессам (т. е. к процессам, связанным с превращением теплоты и работы). [c.26]

    Частным случаем закона сохранения энергии в применении к процессам, сопровождающимся тепловыми явлениями, будет первое начало термодинамики, по которому изменение внутренней энергии [c.35]

    Закон Гесса точен при условии, что все процессы протекают или при постоянном объеме, или при постоянном давлении. Закон Гесса является частной формулировкой первого начала термодинамики в применении к химическим процессам. Если бы количество теплоты при одинаковых начальных и конечных состояниях на различных путях было неодинаково, то, направляя реакцию по одному пути, а затем в обратном направлении — по-друго-Д1у, можно было бы получить энергию из ничего, т. е. осуществить вечный двигатель I рода . [c.85]

    Первое начало термодинамики представляет собой закон сохранения энергии в применении к термодинамическим процессам. [c.17]

    Применение первого начала термодинамики. [c.7]

    Широкое применение первое начало термодинамики получило в термохимии. [c.86]

    Физические и химические явления исследуются в термодинамике главным образом с помощью двух основных законов, называемых первым и вторым началами термодинамики. Первое начало следует из закона сохранения энергии и материи. Второе начало характеризует направление процессов. В XX в. был открыт третий закон термодинамики, который не имеет такого широкого применения, как первый и второй, но важен для теоретического анализа химических процессов. Известно еще нулевое начало (закон) термодинамики. Все законы термодинамики являются постулатами и проверены многовековым опытом человечества. [c.12]


    Непосредственное применение двух первых начал термодинамики дает возможность решать разнообразные конкретные задачи. В некоторых случаях для этого пользуются методом воображаемых обратимых циклов. Можно было бы привести много примеров применения этого метода. Так, в данной книге этот метод был применен для вывода абсолютной шкалы температур (с. 98—103), где мы искусственно ввели ряд последовательно связанных циклов Карно. Таким же путем было получено уравнение Клапейрона—Клаузиуса (IV. 129). Хотя метод циклов во всех случаях приводит к правильному решению задачи, его нельзя считать совершенным, поскольку он требует чисто искусственных построений и обходных путей при решении конкретных задач. Поэтому широкое распространение получил другой, более простой метод — метод термодинамических (характеристических) функций, который по праву можно назвать методом Гиббса. [c.131]

    Первое начало термодинамики —частный случай закона сохранения и превращения энергии в применении к процессам, сопровождающимся выделением, поглощением или преобразованием теплоты. [c.30]

    Применение первого начала термодинамики к простейшим процессам изменения состояния идеального газа приводит к ряду выводов, имеющих важное значение для термодинамики химических процессов. [c.66]

    Все величины в приведенных формулах измеряются в джоулях (Дж). В качестве иллюстрации, дающей представление о применении первого начала термодинамики, удобно рассмотреть связь между теплотой, работой и внутренней энергией при многократном поднятии груза человеком (рис. 1.3). [c.14]

    Первое начало термодинамики является законом сохранения и превращения энергии в применении к физическим, химическим и другим процессам, которые сопровождаются выделением или поглощением теплоты, а также совершением или затратой работы и изменением внутренней энергии системы. [c.15]

    ПРИМЕНЕНИЕ ПЕРВОГО НАЧАЛА ТЕРМОДИНАМИКИ [c.124]

    Формулировки первого начала термодинамики. Первое начало термодинамики является законом сохранения и превращения энергии в применении к термодинамическим системам. Оно было установлено в результате опытных и теоретических исследований в области физики и химии. Завершающим этапом этих исследований явилось открытие принципа эквивалентности работы и теплоты. Для всякого кругового процесса, протекающего в любой термодинамической системе, отношение суммы всех работ к сумме всех теплот есть величина постоянная, равная единице  [c.58]

    Последнее обобщение выходит за пределы собственно термодинамических вопросов. Их рассмотрением ограничивается эта глава. Для термодинамики основным итогом длительных исследований является установление принципа эквивалентности между работой и теплотой — установление первого начала термодинамики. Какова бы ни была система, примененная для превращения работы в теплоту или теплоты в работу, имеется постоянное отнощение между суммарным количеством работы и суммарным количеством теплоты для любого процесса, лишь бы конечное состояние системы было тождественным с ее начальным состоянием. Последнее условие всегда выполнимо в двух случаях для кругового процесса и для стационарного процесса. [c.113]

    Удобной для применения первого начала термодинамики является, дифференциальная форма, связывающая малые изменения внутренней энергии и с соответствующими малыми количествами теплоты с1([ и внешней работы (1хю  [c.66]

    Термохимией называется раздел химической термодинамики, в котором рассматривается применение первого начала (закон Гесса) для вычисления тепловых эффектов различных физико-химических процессов химических реакций, фазовых переходов, процессов кристаллизации, растворения и др. Для практики наибольший интерес имеют термохимические расчеты теплового эффекта химической реакции. [c.90]

    В отличие от обратимых деформаций необратимые деформации всегда связаны с рассеянием в виде теплоты части затраченной на деформацию механической работы. Естественно, что применение первого начала термодинамики к таким процессам позволяет составить энергетический баланс, т. е. определить изменение внутренней энергии или энтальпии в результате деформации, поскольку уравнение [c.191]

    Применение первого и второго начал термодинамики позволяет оценить энергетические и эксергетические итоги только завершенного процесса переноса тепла или заданных элементов такого процесса и вместе с тем не позволяет определить производительность тепловых устройств и, в частности, печей. [c.24]

    Термодинамика возникла в первой половине XIX в. как теоретическая основа начавшей развиваться в то время теплотехники. Первоначальная задача термодинамики сводилась к изучению закономерностей превращения теплоты в механическую работу в тепловых двигателях и исследованию условий, при которых такое превращение наиболее оптимально. Именно такую цель преследовал С. Карно (1792—1832), положивший начало термодинамике. В дальнейшем она вышла далеко за пределы этой технической задачи. Центр тяжести переместился в сторону изучения физических явлений, возникла физическая термодинамика. Основным ее содержанием является изучение закономерностей тепловой формы движения материи. Приложение термодинамики к теории тепловых двигателей и холодильных установок выделилось в техническую термодинамику. Основу химической термодинамики составляет применение термодинамики к химическим явлениям. [c.12]


    Более общим случаем являются взаимные переходы теплоты и механической работы при различных способах расширения и сжатия системы. Анализ таких процессов был проведен еще в середине прошлого века в связи с теорией паровых (тепловых) машин. Создание такой теории и привело к открытию первого и второго начал термодинамики. Поэтому основные идеи термодинамики до сих пор иллюстрируют на примерах взаимных переходов теплоты в механическую работу, хотя важнейшие области применения термодинамики уже давно охватывают задачи химии, теории поверхностных явлений, электрофизические явления и многие другие, весьма далекие от теории и практики работы тепловых машин. [c.13]

    Второе начало термодинамики, так же как и первое, не может быть теоретически выведено из каких-нибудь других законов. Оно является постулатом, обосновываемым всем опытом, накопленным человечеством. Доказательством его служит тс, что опытные данные о свойствах различных термодинамических систел не находятся в противоречии с ним или с каким-либо из следствий, строго вытекающих из него, при правильном их применении. Так же, как и в случае первого начала, можно дать различные формулировки второго начала, так как существует несколько положений, логически связанных между собой, и если принять одно из них в качестве исходного, можно вывести из него остальные. [c.136]

    Первое начало термодинамики выражает количественную сторону закона сохранения и превращения жргии в применении к термодинамическим системам. [c.12]

    Уравнение для расчета температурной зависимости давления пара вывел Клапейрон [2661. В этом уравнении, которое явилось Первым применением второго начала термодинамики к решению физико-химической задачи, не все величины были выражены в явном виде. Лишь спустя 16 лет Клаузиус [267, 268] и одновременно с ним и независимо от него Томсон показали, что уравнение Клапейрона имеет форму [c.35]

    Первый закон ( первое начало ) термодинамики есть частный случай закона сохранения и превращения энергии в применении к объектам, изучаемым термодинамикой, т. е. к процессам, сопровождающимся выделением или поглощением теплоты и производством работы. Этот закон выражает неуничтожае-мость движения не только в количественном, но и в качественном смысле (Энгельс).  [c.28]

    Приведенное уравнение выражает первое начало термодинамики — закон неуничтожимости энергии. Он утверждает, что энергия, полученная системой в форме теплоты, может превращаться в работу, а полученная в форме работы — в теплоту. Первый закон термодинамики есть частный случай закона сохранения и превращения энергии в применении к тепловым процессам. Все видьг экер- [c.36]

    Первое начало термодинамики вйтекает из закона Ломоносова и является принципом сохранения и превращения энергии в применении к термодинамическим процессам. [c.9]

    Энергия — основная физическая величина. Математический аппарат большинства разделов теоретической физики, включая термодинамику, основан на различных формах закона сохранения энергии. Однако важнейшая особенность макроскопических систем, которые рассматриваются в термодинамике, состоит в том, что энергию макроскопической системы невозможно непосредственно измерить. Различные физические методы позволяют только определять изменения энергии отдельных частиц системы — атомов, молекул, ионов. Однако не существует никаких методов непосредственного измерения энергии системы как целого. Изменение энергии макроскопической системы определяют в виде теплоты или работы. Первоначально они рассматривались независимо. Поэтому для макроскопической системы сам факт существования внутренней энергии макроскопической системы как некоторой физической величины удалось установить только в середине XIX в., причем для этого потребовалось открыть ранее неизвестный закон природы — первое начало термодинамики. Впоследствии возникла необходимость использовать и другие неизмеряемые величины — энтропию, химический потенциал и т. п. Широкое применение в математическом аппарате термодинамики непосредственно не измеряемых величин является особенностью термодинамики как науки и сильно затрудняет ее изучение. Однако каждая неизмеряе-мая величина в термодинамике точно определена в виде функций измеряемых величин и все окончательные выводы термодинамики можно проверить на опыте. При этом для описания свойств системы используют специальные термодинамические переменные (или термодинамические параметры). Это физические величины, с помощью которых описывают явления, связанные с взаимными превращениями теплоты и работы. Все это макроскопические величины, выражающие свойства больших групп молекул. Не все эти величины можно непосредственно измерить. [c.6]

    Исследование работы ректификационной колонны при условии принятия гипотезы идеальной тарелки основывается на использовании трех основных законов, а именно свхранения вещества, сохранения энергии и, наконец, второго начала термодинамики. Применение двух первых законов находит свое практическое выражение в составлении основанных на них [c.185]

    Реальные газы отступают от закона Джауля. Этот закон Н может быть обоснован с помощью первого начала термодинамики е(го можно получить из второго начала, примененного к телам, подчиняющимся уравнению состояния идеального газа ( 258). [c.246]

    В 1945 г. Шредингер написал книгу Что такое жизнь с точки зрения физики , оказавшую существенное влияние на развитие биофизики и молекулярной биологии. В этой книге внимательно рассмотрено несколько важнейших проблем. Первая из них — термодинамические основы жизни. На первый взгляд имеется решительное противоречие между эволюцией изолированной физической системы к состоянию с максимальной энтропией, т. е. неупорядоченностью (второе начало термодинамики), и биологической эволюцией, идущей от простого к сложному. Шредингер говорил, что организм питается отрицательной энтропие1и>. Это означает, что организмы и биосфера в целом не изолированные, но открытые системы, обменивающиеся с окружающей средой и веществом, и энергие . Неравновесное состояние открытой системы поддерживается оттоком энтропии в окружающую среду. Вторая проблема — общие структурные особенности органиа-мов. По словам Шредингера, организм есть апериодический кристалл, т. е. высокоупорядоченная система, подобная твердому телу, но лишенная периодичности в расположении клеток, молекул, атомов Это утверждение справедливо для строения организмов, клеток и биологических макромолекул (белки, нуклеиновые кислоты). Как мы увидим, понятие об апериодическом кристалле важно для рассмотрения явлений жизни на основе теории информации. Третья проблема — соответствие биологических явлений законам квантовой механики. Обсуждая результаты радиобиологических исследований, проведенных Тимофеевым-Ресовским, Циммером и Дельбрюком, Шредингер отмечает, квантовую природу радиационного мутагенеза. В то же время применения квантовой механики в биологии не тривиальны, так как организмы принципиально макроскопичны. Шредингер задает вопрос Почему атомы малы Очевидно, что этот вопрос лишен смысла, если не указано, по сравнению с чем малы атомы. Они малы по сравнению с нашими мерами длины — метром, сантиметром. Но эти меры определяются размерами человеческого тела. Следовательно, говорит Шредингер, вопрос следует переформулировать почему атомы много меньше организмов, иными словами, почему организмы построены из большого числа атомов Действительно, число атомов в наименьшей бактериальной клетке [c.12]

    Первое начало термодинамики является законом сохранения а превращения энергии в применении к тепловым явлениям, т. е. к таким, которые сопровождаются выделением, поглощением или преобразованием теплоты. Закон сохранения и превращения энергии выражает неуничтожаемость движения. Неуничтожимость движения надо понимать не только в количественном, но и в качественном смысле , в смысле беспредельной способности к превращению из одной формы в другую. [c.29]

    Исследование работы ректификационной колонны при условии принятия гипотезы теоретической тарелки основывается на использовании трех основных законов сохранения вещества, сохранения энергии и второго начала термодинамики. Применение двух первых законов находит свое практическое выражение в составлении основанных на них уравнений материльного и теплового баланса. Второй же закон термодинамики используется при выводе равновесных парожидких соотношений, определяющих глубину самопроизвольных процессов массообмена и энерго-обмена нри контактировании неравновесных фаз. [c.136]

    Термодинамический метод синтеза теплообменных систем [16]. Анализ процессов химической технологии на основе первого закона термодинамики находит широкое практическое применение. Наряду с этим все большее распространение получают методы анализа на основе второго начала термодинамики, в частности (используемые исходя из концепции эксергии как меры превратп-мости энергии), при оптимизации и проектировании технологических производств (см. гл. 7). Привлекательность этих методов заключается в том, что имеется возмо кность оценить в общем случае минимально возмо кные потери энергии за счет необратимости процесса и тем самым определить реальные перспективы совершенствования процесса. Развитие этих термодинамических методов идет по пути получения количественной информации о совершенстве протекания отдельных явлений. Что касается качественных выводов, то они хорошо известны. Например, потери превратимой энергии отсутствуют при смешении потоков, находящихся в термодинамическом равновесии, или потери энергии в противоточном теплообменнике выше, чем в прямоточном, равно как с увеличением поверхности теплообмзна потери за счет необратимости нроцесса снижаются. [c.466]

    На первый взгляд, может сложиться представление б дто использование функций распределения является лишь сугубо вычислительным npиeмo i. Нетрудно показать, что применение формул распределения является прямым следствием ряда фундаментальных положений физйки и химической термодинамики и, в частности, второго начала термодинамики [2]. [c.219]


Смотреть страницы где упоминается термин Первое начало термодинамики и его применение: [c.89]    [c.53]    [c.36]    [c.127]   
Смотреть главы в:

Физическая химия -> Первое начало термодинамики и его применение




ПОИСК





Смотрите так же термины и статьи:

Начала тел

Начала термодинамики первое

Первое начало термодинамики

Применение начал

Термодинамики первый



© 2025 chem21.info Реклама на сайте