Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Способы образования и получения парафиновых углеводородов

    Значимость четырех вышеприведенных критериев неодинакова. Наиболее важным является первый критерий, и почти все системы определения взаимозаменяемости включают тот или ной способ измерения потока тепловой энергии. Однако более подробно эта тема будет обсуждаться ниже. Второй критерий, определяющий размер и форму факела при сжигании предварительно смешанного газа, зависит от скорости распространения пламени, причем эта скорость совершенно одинакова для разных парафиновых углеводородных газов, метана, этана и т. д., но имеет различные значения для углеводородов и водородсодержащих газов. И, наконец, критерии образования промежуточных продуктов реакций горения и сажи имеют смысл, когда топливные газы содержат ненасыщенные промежуточные соединения критерий сажеобразования важен и тогда, когда в газовом топливе имеются ненасыщенные и высококипящие углеводороды или соединения ароматического ряда. Во всех остальных случаях углистые отложения и загрязняющие вещества не превышают норм, допустимых для природного газа и используемого топочного оборудования. Вследствие этого учет двух последних критериев взаимозаменяемости ограничен районами, пользовавшимися в прошлом синтетическим или полученным из угля газовым топливом. [c.44]


    Получение олефинов и д и о л е ф и-н о в. При нагревании Г. п. г. до 600° и выше содержащиеся в них парафиновые углеводорода. способны к реакциям расщепления с разрывом связей и образованием ненредельных углеводородов и водорода или непредельных и предельных углеводородов с меньшим числом атомов углерода в молекуле. Эти реакции применяются для ироиз-ва этилена, пропилена, бутилена, бутадиена и изопрена, являющихся основным сырьем для получения спиртов, пластмасс и синтетич. каучуков. Расщепление углеводородов в промышленных условиях проводится под воздействием только темп-ры (пиролиз) или темп-ры и катализаторов (см. Гидрогенизация и дегидрогенизация каталитические). В зависимости от способа подвода тенла, необходимого для протекания реакций, пиролиз и дегидрирование проводят в трубчатых печах с внешним обогревом или в печах регенеративного типа. Выход непредельных углеводородов зависит от темп-ры, времени пребывания сырья в реакционном пространстве, давления, отношения С/Н в исходном сырье, конструкции печи и др. факторов. Основным продуктом термич. пиролиза этана является этилен. При переходе от этана к пропану и бутану в продуктах пиролиза наблюдается снижение выхода этилена и увеличение выхода высших олефинов (пропилена и ёутиленов). Суммарный выход непредельных углеводородов при термич. пиролизе составляет (в вес. %) из этана 75—77, из пропана 40—50 и из бутана ок. 50. [c.387]

    Способы образования и получения парафиновых углеводородов [c.30]

    Крекингом газообразных парафиновых углеводородов, иначе парофазным крекингом, называют пиролитическое расщепление газообразных парафиновых и олефиповых углеводородов (пропана, бутана, пропена и бутена), приводящее к образованию более низкомолекулярных олефинов. Этим способом пользуются преимущественно при получении этилена из пропана и этилена и пропена из бутана. Пропан при быстром нагреве до 700— 800° в основном распадается на этилен и метан (переработка углеводородов при температуре выше 600° обычно называется пиролизом). Одновременно происходит дегидрирование пропана с образованием пропена, так что конечный продукт реакции состоит главным образом из этилена, пропена, метана и водорода. [c.10]

    Ниже приведена схема различных промышленных способов получения уксусной кислоты и ее ангидрида. В эту схему не включен способ получения уксусной кислоты сухой перегонкой древесины, образование кислоты в процессе хайдрокол, а также при окислении низших парафиновых углеводородов воздухом. [c.318]


    Полученные описанным способом алкплаты алюминия можно также подвергнуть разложению водой с образованием смесей парафиновых углеводородов, начиная от мягкого и твердого парафина и до углеводородов, аналогичных полиэтилену, но не столь высокого молекулярного веса. [c.68]

    Газовый крекинг регенеративным способом Кор-регя- Нп8сЬе-Ши1 -Уег/ак- ген) [23]. Способ пиролиза, оспованный на регенерационном принципе, применяется как для производства этилена пиролизом этапа, так и для получения ацетилена. Техническое совершенство печей системы Копперс-Хаше делает особенно выгодным применение принципа регенерации и обеспечивает максимально возможное использование тепла. Здесь могут быть достигнуты значительно более высокие температуры, чем при пиролизе в трубчатых печах, в результате чего может быть сокращено время реакции. В интервале температур 870—1110° пронан расщепляется на 85—90% с образованием 34% вес. этилена. Этан при 900—980° превращается на 75—85%, давая до 52,5% этилена. Все выходы достигаются за однократный пропуск сырья через печь и могут быть увеличены еще более нри работе с циркуляцией, т. е. когда не подвергшаяся пиролизу часть парафиновых углеводородов возвращается обратно в процесс. Табл. 27 показывает результаты полупромышленного опыта пиролиза регенеративным способом. [c.54]

    В то же время, подобрав соответствующие условия, можно получить комплексы и с нормальными парафинами, содержащими менее шести атомов углерода в цепи. Так, Домаску и Кобе [27] удалось получить комплекс с н-пентаном при низкой температуре и под большим давлением. Шленком [28] были подобраны условия для получения карбамидных комплексов, хотя и неустойчивых, из нелетучих соединений, содержащих в цепи всего три атома углерода. Предложен способ выделения карбамидом низкомолекулярных углеводородов, содержащих в неразветвленной цепи молекулы от двух до семи атомов углерода, из смеси углеводородов, являющихся жидкостями в нормальных условиях. Для образования комплекса с такими низкомолекулярными углеводородами реакцию необходимо проводить в присутствии парафинового углеводорода, твердого при нормальных условиях, а также в присутствии небольшого количества полярного жидкого растворителя. Образующийся комплекс выделяют из реакционной смеси, после чего из него регенерируют углеводороды низкого молекулярного веса [29]. [c.18]

    Свойства. иСг ( -фаза). Светло-серое-с металлическим блеском кристаллическое вещество. Состав U 2 в препаратах, как правило, не достигается полученные обычными способами продукты имеют состав от U i.ss Д° U i,g. Реагирует с горячей водой с образованием Нг, СН4, парафиновых углеводородов с большим числом -aTO vfOB я следов С2Н2, СО, СО2. Кристаллическая структура тетрагональная (пр. гр. 14/mmm а=3,527 А с= 6,002 А АЗТМ-карточка № 6-372). Область существования от комнатной температуры до 1800 °С выше 1800 С превращается в кубическую модификацию oj (< = = 5,488 А), in., 2375 25°С ДЯ гэа —88,3 кДж/моль d 11,68. [c.1333]

    Детально изучалась реакционная способность СН2, полученного из диазометана, в растворах и в газовой фазе. Было обнаружено [92], что метилен, полученный фотолизом диазометана в жидких парафиновых углеводородах, реагирует неизбирательно по связям водорода с первичными, вторичными и третичными углеродными атомами. С другой стороны, наблюдалось [93], что газофазный фотолиз приводит к образований метилена, реагирующего по углерод-водородным связям избирательно в примерном соотношении активностей третичный вторичный первичный, равном 1,5 1,2 1,0. Изучался [94] фотолиз раствора диазометана в 14 парафиновых углеводородах С , g и Сд. Состав продуктов обнаружил хорошую сходимость со статистически ожидавшимся на основе включения метилена по связям углерод — водород. Эти результаты были объяснены [95, 96] на основании изучения спектров метилена, полученного фотолизом в газовой фазе, доказавших существование и синглетного, и триплет ного состояний продолжительность синглетного состояния оказалась меньше. Таким образом, можно предположить, что неизбирательная реакция метилена по углерод-водородным связям в растворенных парафиновых углеводородах обусловлена возбужденным синглетным состоянием (спа репные, неучаствующие в валентных связях электроны) и что эта реакция протекает значительно быстрее, чем переход из синглетной формы в три нлетную (неспаренные, неучаствующие в валентных связях электроны) Следовательно, в растворе радикальный характер СН2 проявляется слабо. В газовой фазе частота столкновений меньше, и поэтому переход из синглетного в триплетное состояние происходит со скоростью такого же порядка, как случайное включение синглета. Можно ожидать, что метилен в триплетном состоянии реагирует по углерод-водородным связям избирательно, как это наблюдается и у других радикалов. Следовательно. СНз реагирует по углерод-водородным связям двумя способами случайным включением синглета или избирательным отнятием водорода трипле-1 том. Второй путь ведет к образованию метильных и алкильных радикалов , которые могут рекомбинироваться, приводя к кажущемуся избиратель-  [c.245]


    Окисление нормальных пропилового и бутилового спиртов приводит к образованию пропиопового и масляного альде и-дов. В качестве катализаторов для этих процессов также лучше всего использовать металлическое серебро. По технологическому оформлению получение этих альдегидов не отличается от производства кетонов, описанных выше. Необходимо отметить, что в связи с развитием прямого окисления парафиновых углеводородов в соответствуюш ие альдегиды и кетоны получение этих продуктов окислением спиртов является в известной мере уже устаревшим способом, хотя еш,е и имеющим определенное значение в промышленности. [c.99]

    В первый период освоения процесса депарафинизации выделение твердых углеводородов из рафинатов проводили в одну ступень. На таких установках твердые углеводороды, являющиеся сложной смесью компонентов, различающихся по структуре молекул, но содержащих парафиновые цепи нормального или сла-боразветвленного строения, кристаллизовались совместно, образуя мелкие смешанные кристаллы, а при депарафинизации сырья широкого фракционного состава — эвтектические смеси. Такой способ кристаллизации приводил к образованию труднофильтруемых осадков, в результате чего выход масла и скорость отделения твердой фазы были недостаточно высоки, а повышенное содержание масла в гаче усложняло процесс получения парафинов. В связи с этим встал вопрос о раздельной кристаллизации высоко-и низкоплавких углеводородов, который был решен внедрением в промышленность двухступенчатой депарафинизации. Этот процесс позволил увеличить выход депарафинированного масла, значительно повысить скорость фильтрования суспензии и снизить содержание масла в гаче, так как твердые ароматические углеводороды, уменьшающие размер кристаллов парафиновых и нафтеновых углеводородов, концентрируются в низкоплавких компонентах, кристаллизующихся во второй ступени процесса. [c.159]


Смотреть страницы где упоминается термин Способы образования и получения парафиновых углеводородов: [c.314]    [c.73]    [c.115]    [c.302]    [c.70]    [c.781]    [c.877]    [c.115]   
Смотреть главы в:

Курс органической химии -> Способы образования и получения парафиновых углеводородов




ПОИСК





Смотрите так же термины и статьи:

Образование углеводородов

Парафиновые углеводороды



© 2025 chem21.info Реклама на сайте