Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Идентификация классов органических соединений и индивидуальных веществ

    ИДЕНТИФИКАЦИЯ КЛАССОВ ОРГАНИЧЕСКИХ СОЕДИНЕНИИ И ИНДИВИДУАЛЬНЫХ ВЕЩЕСТВ [c.285]

    В то же время все большее распространение получает другой вид лабораторных занятий по органической химии — иной по характеру и меньший по общему числу учебных часов — так называемый малый практикум. Его более целесообразно проводить параллельно лекционному курсу, так как лабораторные работы этого типа непосредственно связаны с основными положениями, излагаемыми в лекциях, и значительно способствуют усвоению материала. Задачей малого практикума является главным образом ознакомление студентов на опыте с общими свойствами и характерными реакциями различных классов органических соединений и с индивидуальными особенностями их важнейших представителей. Многие органические соединения, свойства которых исследуют в малом практикуме, приготовляют и выделяют непосредственно в ходе опытов. Таким образом, уже в этих работах студенты знакомятся с некоторыми препаративными синтетическими методами, а также с выделением, очисткой и идентификацией органических веществ. [c.13]


    Масс-спектрометрическое определение строения неизвестных органических соединений по своей сущности — задача классификационная, так как обязательно включает стадию отнесения неизвестного вещества к группе соединений с общими особенностями строения молекул, т. е. классификацию или групповую идентификацию. Индивидуальную идентификацию— отождествление веществ сравнением полученных в ходе анализа масс-спектров с литературными данными — следует рассматривать как самостоятельную задачу, решение которой требует разработки и использования наиболее рациональных алгоритмов обработки больших массивов библиотечных данных (каталогов масс-спектров) с учетом воспроизводимости таких спектров. При индивидуальной идентификации, таким образом, можно не принимать во внимание общие закономерности фрагментации отдельных классов соединений. Групповая идентификация обязательно требует наличия информации об особенностях диссоциативной ионизации предполагаемых классов органических соединений, а окончательное установление структуры неизвестных веществ невозможно без данных об их составе (брутто-формуле). [c.6]

    Задачи и методы выявления закономерностей и особенностей фрагментации органических соединений принципиально отличаются от задач и методов структурного анализа и идентификации неизвестных веществ по их масс-спектрам прежде всего тем, что строение изучаемых соединений известно. Конечная цель такого исследования впервые синтезированных или ранее не охарактеризованных веществ — связь спектральных признаков со строением веществ и получение данных о механизмах фрагментации отдельных соединений, их совокупностей со сходными элементами структуры или, чаще всего, целых классов (гомологических рядов). Это подразумевает выявление основных направлений распада молекулярных ионов, классификацию этих процессов, соотнесение всех интенсивных сигналов спектра с соответствующими осколочными ионами и установление связи таких осколочных ионов с теми или иными структурными фрагментами молекул. Чаще всего результатом подобного исследования является формулировка правил интерпретации спектров, пригодных для структурного анализа неизвестных соединений этого же типа. Полученные данные нередко представляют в виде схем фрагментации как индивидуальных соединений, так и, в общем виде, гомологических рядов. При этом следует учитывать, что структуры осколочных ионов обычно неизвестны, и на таких схемах их предпочтительнее изображать брутто-формулами. [c.50]


    После определения класса органического соединения по масс-спектру следующим, более высоким, уровнем идентификации становится индивидуальная идентификация вещества. [c.98]

    Электронные спектры поглощения являются важнейшей характеристикой органических соединений. Они тесно связаны со строением, физико-химическими свойствами и реакционной спО собностью органических молекул. Накоплен огромный экспериментальный материал и установлены определенные эмпирические закономерности между строением и электронными спектрами поглощения различных классов органических соединений. Электронные спектры широко используются при исследовании строения индивидуальных соединений, изучении кинетики и равновесия многочисленных реакций с их участием, идентификации и анализе органических и других химических веществ. Ими пользуются также как одним из наиболее удобных и обоснованных свойств в физико-химическом анализе. Разработана и широка применяется разнообразная спектральная аппаратура, с помощью которой получают надежные данные об электронных спектрах поглощения органических соединений. [c.3]

    Обобщение масс-спектров органических соединений различных классов позволило автору установить типичные направления распада молекул. Эмпирические закономерности, связывающие определенные Молекулярные структуры с масс-спектрами, послужили основой для идентификации, качественного анализа смесей органических веществ, определения индивидуального и группового состава. Перечисленным выше вопросам посвящены гл. 8—10. [c.6]

    Понятие гомологии является одним из важнейших в органической химии, и гомологические ряды составляют основу современной классификации органических соединений. Однако в это понятие нередко вкладывается недостаточно определенный смысл, а единственная монография, специально посвященная детальному рассмотрению этой проблемы, опубликована более 35 лет назад [2]. Вопросы принадлежности соединений к разным гомологическим рядам весьма важны и связаны, например, с проблемами изомерии в органической химии [3], в частности с созданием эффективных алгоритмов определения числа возможных изомеров по брутто-формуле вещества с помощью ЭВМ. Совершенно особое значение приобретает точное определение этого понятия при интерпретации результатов исследования органических соединений с помощью современных физических и физико-химических методов, так как позволяет значительно упростить решение задачи за счет разделения стадий групповой (отнесение к гомологическому ряду) и индивидуальной идентификации (определение строения соединения известного класса с учетом числа его возможных изомеров). [c.9]

    Хромато-масс-спектрометрическая идентификация следовых количеств органических веществ в атмосферном воздухе представляет собой одну из наиболее сложных задач в масс-спект-рометрии. В связи с тем что даже после концентрирования из больших объемов воздуха многие органические соединения, присутствующие в нем, детектируются лишь на пределе чувствительности современных приборов, специального рассмотрения требует проблема использования для идентификации небольшого числа наиболее интенсивных линий масс-спектров. Непосредственно с этим связан также характер идентификации во многих случаях информации, извлекаемой из положения и интенсивностей нескольких главных пиков масс-спектра, может быть недостаточно для индивидуальной идентификации компонентов атмосферных примесей, особенно при наличии нескольких веществ со сходными масс-спектрами. При этом приходится ограничиваться отнесением к классу соединений, группе изомеров, определением брутто-формулы, либо просто указанием молекулярной массы вещества. В данной главе обсуждаются также вопросы привлечения для идентификации микропримесей масс-спектров, взятых из разных источников. Различия между такими спектрами обуславливают возможность или невозможность дифференциации изомеров с незначительно отличающимися интенсивностями одинаковых по массе главных пиков на основании только литературных данных. Особое значение при идентификации следов органических веществ по малому числу пиков приобретает использование, в дополнение к ограниченным масс-спектрометрическим данным, хроматографических параметров удерживания. [c.77]

    Лизий и Нельсон [97] попытались добиться лучшего разделения продуктов пиролиза некоторых веществ. Пробы объемом 0,1— 0,25 мл, содержащие 10 2% крахмала, 10- % желатина или 10 % гептановой кислоты, подвергали пиролизу при 700 °С в трубке, заполненной гранулированным никелем, и затем хроматографировали продукты пиролиза на колонке с 20% карбовакса 20М на хромосорбе W-AW-DM S. В качестве газа-носителя использовали водяной пар. Метод оказался пригодным для идентификации органических соединений по классам, но не для идентификации индивидуальных соединений. [c.388]


    В методе ТСХ имеются свои трудности и ограничения. Одного этого метода недостаточно для полной и точной идентификации органических веществ-загрязнителей, экстрагируемых из водных истем. ТСХ следует использовать в сочетанииХС некоторыми другими аналитическими методами. Невозможно разработать простую и универсальную методику для выделения и разделения, например, всех классов органических пестицидов. Более того, подчас возникают трудности при разделении смеси пестицида и продуктов его разложения. То же можно сказать о фенолах, детергентах и т. д. В связи со значительной разницей в полярностях индивидуальных соединений использование однокомпонентных элюентов для ТСХ-разделения крайне нежелательно. Чтобы подобрать оптимальные условия разделения применительно к конкрет ной системе, необходимы предварительные опыты. Для каждой рассматриваемой системы следует определять Rf. При анализе следов веществ часто возникают ошибки, связанные с недостаточно высокой техникой эксперимента. Бевеню с сотр. [36] успешно исследовали многие проблемы, возникающие при проведении лабораторных анализов проб воды. Исследователи имели дело в основном с органическими пестицидами, но полученные ими результаты можно распространить на другие вещества-загрязнители. Первая проблема связана с размером пробы. Если экстрагируют небольшую быстро отобранную пробу объемом до 3,8 л, то из-за малого количества выделяемого вещества-загрязнителя становится невозможным детектирование с помощью проявляющего реагента, поскольку опрыскивание обычно дает результаты для микрограммовых количеств. Вторая проблема связана с удалением зоны вещества с подложки и элюированием вещества растворителем для последующего газохроматографического анализа. Посторонние помехи ( шумы ) усиливаются на диаграмме регистратора, если не принять специальных мер по полной очистке от органических загрязнений растворителей, стеклянной посуды и другого оборудования, а также ТСХ-адсорбентов. Так, органические растворители с маркировкой чистые нельзя использовать для анализа следов пестицидов, присутствующих в нанограммовых или пикограммовых количествах. Эти растворители перед использованием необходимо дважды перегонять в системе из стекла. [c.500]

    При улавливании из воздуха загрязняющих его веществ помимо механизма сорбции и хемосорбции первостепенное значение приобретает специфичность хемосорбента, т.е. возможность избирательного поглощения целевых компонентов из смесей с органическими и неорганическими соединениями различных классов. Селективное поглощение из воздуха целевых компонентов (индивидуальных соединений или групп однотипных веществ) существенно облегчает их последующую идентификацию и делает ее значительно более информативной (см. гл. I), чем в случае пробоотбора с помощью сорбционных ловушек с адсорбентами (активный уголь, силикагели, пористые полимеры, графитрованные сажи и др.), применяемыми в традиционных методиках определения загрязнений воздуха. [c.98]

    В книге освещены возможности газовой хроматографии как самостоятельного метода идентпфикащ1и индивидуальных соединений и ко.мпонентов сложных смесей. Значительное внимание уделено вопросам точности измерения величин удерживания, а также закономерностям, связывающим газохроматографическое поведение сорбатов с их физи1 о-химическими свойствами и строением молекул. Описаны разнообразные приемы идентификации органических веществ. В приложении дается справочный материал по удерживанию веществ различных классов. [c.2]


Смотреть страницы где упоминается термин Идентификация классов органических соединений и индивидуальных веществ: [c.89]   
Смотреть главы в:

Химические методы анализа -> Идентификация классов органических соединений и индивидуальных веществ




ПОИСК





Смотрите так же термины и статьи:

Идентификация веществ

Идентификация индивидуальных органических соединений

Идентификация индивидуальных соединений

Идентификация органических веществ

Идентификация соединений

Классы органических соединений

Органические вещества соединения

Органические соединения вещества органических соединений

Соединения классы



© 2025 chem21.info Реклама на сайте