Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободная энергия Гиббса и равновесные концентрации

    Изложенная схема расчета интеграла состояний системы не содержит ограничений на природу и величину потенциальной энергии межчастичного взаимодействия. Это позволяет определить аксиоматику построения математической модели состояния равновесной системы. Равновесный состав должен удовлетворять 1) уравнениям ЗДМ, описывающим образование молекулярных форм, приводящих к эффективному уменьшению экстремума свободной энергии Гиббса [5] 2) максимальному числу линейно-независимых стехиометрических уравнений закона сохранения вещества и заряда 3) уравнению связи измеряемого свойства системы с равновесными и исходными концентрациями составляющих частиц. Термодинамика не дает априорных оценок предельных концентраций компонентов системы, допускающих указанные приближения структуры жидкости. Состоятельным критерием возможности применения модели идеального раствора для комплексов, по-видимому, может служить постоянство констант химических равновесий при изменении концентраций компонентов системы, если число констант, необходимых для адекватного описания эксперимента, не превышает разумные пределы. [c.18]


    При подготовке пятого издания в него внесены дополнения и изменения и сделаны некоторые сокращения. Введены два новых раздела "Классы неорганических соединений" и "Периодический закон и свойства соединений". Раздел 5 назван "Термохимия и химическое равновесие", в нем собраны задачи и упражнения по расчету изменения энтальпии, энтропии, свободной энергии Гиббса, по их применению для описания химических реакций и по расчету концентраций в равновесных системах. Главы "Равновесие в растворах электролитов" и "Направление обменных химических реакций в растворах электролитов" объединены в один раздел "Ионные реакции в растворах". Этот раздел существенно переработан. В раздел, посвященный химии отдельных элементов, включены упражнения по составлению уравнений реакций, отражающих важнейшие свойства их соединений. Несколько сокращена глава "Физико-химические свойства разбавленных растворов" и ей дано другое, более конкретное, название "Коллигативные свойства растворов", отражающее то, что в данном разделе рассматриваются свойства растворов, зависящие от концентрации частиц. Исключена глава "Радиоактивность. Ядерные реакции", так как обсуждаемые в ней вопросы фактически являются содержанием физики. Все изменения имели своей целью приблизить содержание задач и упражнений к химической практике. При переработке пособия мы стремились сохранить содержание, поэтому задачи и упражнения, имевшиеся в четвертом [c.3]

    При введении в равновесную окислительно-восстановительную систему органического вещества при данной электронной активности состояние равновесия будет нарушено. Если известны концентрации каждого акцептора электронов и их конечных восстановленных продуктов в системе, может быть определена свободная энергия Гиббса для окисления вещества. Значения свободной энергии для ацетата и глюкозы при введении их в концентрации 10- М в равновесную систему с различной электронной активностью демонстрирует нижняя часть рис. 28. [c.96]

    Молекулярная теория возникла почти одновременно с мнцел- лярной. Ее сторонниками, в частности Штаудинтером, было показано, что растворение полимеров, как и низкомолекулярных веществ,. идет с уменьшением свободной энергии, т. е. самопроизвольно, тогда как при образовании гетерогенной коллоидной системы свободная энергия возрастает в результате увеличения поверхности дисперсной фазы. Одним из доказательств того, что растворы полимеров термодинамически устойчивы и обратимы, является применение к ним правила фаз Гиббса. Наиболее важной в этой области является работа В. А. Каргина, С. П. Папкова и 3. А. Роговина но исследованию растворов ацетата целлюлозы в различных растворителях. Авторы показали, что в случае ограниченной растворимости ацетата целлюлозы в выбранном растворителе после расслаивания системы на две фазы каждой температуре отвечает определенная концентрация ацетата целлюлозы как в нижнем, так и в верхнем слое. Процесс оказался строго обратимым и термодинамически равновесным, т. е. концентрации слоев были неиз менны при данной температуре, как бы к этой температуре ни подходили— путем нагревания смеси или ее охлаждения. Кроме того, вид диаграммы для этой и других изучаемых авторами систем ацетат-целлюлоза— растворитель был аналогичен диаграммам состоя.ння низкомолекулярных ограниченно смешивающихся жидкостей. [c.150]


    Рассмотрение двух кривых концентрационной зависимости изобарно-изотермического потенциала в изобарическом сечении дает картину, показанную на рис. 46. Проведя общую касательную и учитывая, что значения свободной энергии Гиббса внутри интервала концентраций между сосуществующими фазами всюду ниже изобарно-изотермического потенциала каждой из фаз в отдельности, заключаем, что в указанном интервале при данных значениях температуры и давления устойчива смесь равновесных фаз, и изобарный потенциал смеси определяется по правилу аддиатив-ности. Мы уже отмечали, что в конденсированных системах роль давления сравнительно невелика и в известных пределах ею можно пренебречь. В этом случае для двухкомпонентных систем в качестве параметров состояния, определяющих характер фазовой диаграммы на плоскости, остаются температура и концентрация. Закрепляя один из этих параметров, получаем возможность для установления четкой зависимости изобарно-изотермического потенциала от другого параметра. Анализируя относительное расположение этих зависимостей для различных фаз, получаем способ установления характера фазового равновесия в системе. [c.264]

    Рассматривая разупорядочение по Шоттки и по Френкелю как термодинамически равновесный процесс, можно определить концентрации дефектов при заданной температуре, исходя из общего условия равновесия. Этим условием является минимум свободной энергии системы. Поскольку речь будет идти о процессе, протекающем при постоянном давлении, следует пользоваться понятием свободной энергии Гиббса G, или изобарного потенциала. Из общего курса физической химии известно [5], что эта величина равна разности между полной внутренней энергией (теплосодержанием) системы при постоянном давлении, или энтальпией Н, и связанной энергией, которая в свою очередь равна произведению энтропии (S) на абсолютную температуру  [c.83]

    Здесь ДС представляет стандартное изменение свободной энергии Гиббса в результате химической реакции. Для идеальных систем величины К в уравнениях 4.3, 4.2 эквивалентны. Уравнение 4.2 позволяет Б принципе определять экспериментально константу равновесия, измеряя равновесные концентрации реагентов. [c.61]

    Принцип эквивалентности источников беспорядка в условиях минимизации свободной энергии системы состоит в том, что для любой системы (в том числе и кристалла) совершенно безразлично, что является источником увеличения ее энтропии — точечные, протяженные дефекты или свободная поверхность. В зависимости от конкретной ситуации твердофазный материал в равновесных условиях приобретает тот вид дефектов, который при наименьших энергетических затратах обеспечивает максимальное увеличение энтропии. Эти представления позволяют, например, понять, почему спеканием чистого поликристаллического оксида иттрия нельзя получить прозрачную керамику ни при каких условиях нагрева. Поры, межкристаллитные границы и дислокации являются тем источником увеличения энтропии, который обеспечивает минимальное значение энергии Гиббса. Получить прозрачную керамику на основе УгОз удалось, легируя последний оксидом циркония (IV), тем самым создав структуру с высокой концентрацией точечных дефектов, являющихся источником беспорядка. [c.169]

    Объясняя причины малой растворимости неполярных газов в воде при низких температурах, логично принять, что при образовании квазиклатратных полостей из жидкой воды термодинамические функции меняются аналогично как и при образовании полостей твердых кристалло-гидратных структур из льда, т.е. увеличение свободной энергии Г иббса. Из зтого допущения следует, что растворение газа в воде при образовании квазиклатратных полостей уменьшается. Действительно, при образовании квазиклатратных полостей в процессе перехода газа из стандартного состояния в водный раствор, находящийся в равновесии с газом, должно происходить увеличение свободной энергии Гиббса. Однако общее изменение свободной энергии при переходе газа из стандартного состояния в равновесный с ним водный раствор газа равно нулю (условие фазового равновесия Ац. = 0). Единственная возможность уменьшить свободную энергию для выполнения упомянутого условия — это снижение растворимости газа, поскольку свободная энергия компонента уменьшается с уменьшением его концентрации. [c.163]

    Согласно первому механизму, атом может совершать блуждание лишь в том случае, если по соседству с ним окажется незанятый узел, так называемая вакансия (дырка). Очевидно, что создание вакансии, т. е, перевод атома из середины на поверхность тела с оставлением свободного узла, требует затраты некоторой энергии Ub- При температуре, приближающейся к абсолютному нулю, когда энергия тела имеет минимальное значение, чнсло вакансий должно стремиться к нулю. Однако прн любой температуро Т имеется некоторая равновесная концентрация вакансий, так как равновесие определяется минимумом не внутренней, а энергии Гиббса. [c.347]


    Вакансии являются одним из важнейших типов дефектов в твердом теле, определяющим протекание многих процессов и многие свойства металлов. Вблизи абсолютного нуля равновесная концентрация вакансий равна нулю, так как создание вакансии приводит к повыщению энергии решетки. При высоких температурах состояние определяется минимумом свободной энергии, включающей энтропию, так как вакансии могут различным образом располагаться в решетке. Энтропия растет при увеличении числа вакансий. Для определения концентрации вакансий рассмотрим изменение энергии Гиббса, вызванное появлением в атоме твердого тела z вакансий  [c.356]

    Тем не менее, решая совместно уравнение свободной энергии Гиббса и интегральные виды уравнения Гиббса-Дюгема и уравнения Дюгама-Маргулиуса, можно выявить интегральный аналитический вид коэффициентов активности и летучестей от равновесных концентраций компонентов бинарной системы. Возьмем в качестве примера бинарную двухфазную смесь. [c.92]

    Поверхностная активность, т. о. способность понижать в результате адсорбции свободную поверхностную энергию — важнейшее общее свойство ПАВ. В случае обратимой (термодпнамическп равновесной) адсорбции количественным выражением поверхностной активности м. б. наибольшее значение производной поверхностного натяжения по концентрации, к-рое, в соответствии с адсорбционным ур-нием Гиббса, определяется наибольшим значением отношения новерхио-стпого избытка (количества адсорбированного вещества) Г к равновесной концентрации с  [c.336]

    В последующие годы развитие химической термодинамики пошло по двум, сначала совершенно независимым линиям. Первая связана с именами Гельмгольца и Вант-Гоффа, вторая — с именем Гиббса. В 1882 г. Гельмгольц в статье под названием К термодинамике химических реакций предложил разделить химическую энергию на две части способную превращаться только в теплоту и способвзгю превращаться в другие виды работы. Первую он назвал связанной, а вторую свооодрой энергией. Гельмгольц показал, что для изотермических систем минимум свободной энергии является условием их равновесия. Таким образом, наряду с энтропией появился еще один критерий химического равновесия. Принципиальное значение имел и вывод Гельмгольца о том, что именно значения свободной энергии, а не энергии, проявляющейся путем выделения тепла, будут определять, в каком направлении может действовать химическое сродство. Следующий шаг принадлежал Вант-Гоффу (1884—1887). Оперируя моделью идеального газа, Вант-Гофф установил термодинамическим путем связь между равновесными концентрациями исходных веществ и конечных продуктов реакции, т. е. вывел теоретически закон действия масс. Вант-Гофф предложил также уравнение, выражающее зависимость константы равновесия (он впервые применил этот термин, так же как и знаки для обратимых реакций) от температуры, установил зависимость между константой равновесия К и работой . которую может произвести химическое сродство  [c.121]


Смотреть страницы где упоминается термин Свободная энергия Гиббса и равновесные концентрации: [c.22]    [c.89]    [c.89]   
Смотреть главы в:

Сборник задач и упражнений по химии Изд.5 -> Свободная энергия Гиббса и равновесные концентрации




ПОИСК





Смотрите так же термины и статьи:

Гиббс

Гиббса свободная

Гиббса свободная энергия

Гиббса энергия

Гиббсит

Концентрация равновесная

Свободная энергия

Свободная энергия и концентрация

Свободная энергия энергия Гиббса

Энергия Гиббса Гиббса энергия



© 2025 chem21.info Реклама на сайте