Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активирование и ингибирование ферментов

    Активирование и ингибирование ферментов [c.145]

    Подобные типы ингибирования конечным продуктом и активирования первым продуктом свойственны аллостерическим (регуляторным) ферментам, когда эффектор, модулятор, структурно отличаясь от субстрата, связывается в особом (аллостерическом) центре молекулы фермента, пространственно удаленном от активного центра. Следует, однако, иметь в виду, что модуляторами аллостерических ферментов могут быть как активаторы, так и ингибиторы. Часто оказывается, что сам субстрат оказывает активирующий эффект. Ферменты, для которых и субстрат, и модулятор представлены идентичными структурами, носят название гомотропных в отличие от гетеротропных ферментов, для которых модулятор имеет отличную от субстрата структуру. Взаимопревращение активного и неактивного аллостерических ферментов в упрощенной форме, а также конформационные изменения, наблюдаемые при присоединении субстрата и эффекторов, представлены на рис. 4.25. Присоединение отрицательного эффектора к аллостерическому центру вызывает значительные изменения конфигурации активного центра молекулы фермента, в результате чего фермент теряет сродство к своему субстрату (образование неактивного комплекса). [c.156]


    Кроме систем отрицательной обратной связи, осуществляющих ингибирование активности, существуют и иные системы, в которых регуляция выражается в активировании фермента, если оно необходимо. Наглядным примером положительной обратной связи служит активирование ферментов при хранении и использовании энергии в клетке. [c.90]

    Энергетика дыхания. Большое значение для сопротивляемости должна иметь способность клеток противостоять развитию гидролитических процессов, индуцируемых экстрацеллюлярными ферментами паразита. Это не только необходимо для сохранения нормальной структуры протоплазмы и нормальной жизнедеятельности клетки, но важно с точки зрения возможности лишить микроорганизм необходимой ему пищи. Ингибирование гидролитических процессов может достигаться двумя путями разрушением ферментов, входящих в состав токсических выделений, и активированием синтетических процессов. Как тот, так и другой путь связаны с потреблением энергии, освобождающейся в процессе дыхания. [c.250]

    Как уже отмечалось, чувствительность к действию токсина неодинакова у отдельных ферментов, входящих в окислительный аппарат растения. В силу этого, наряду с ингибированием деятельности одних ферментов, наблюдается активирование других. Следует подчеркнуть, что такого рода активирование характерно в первую очередь для иммунных форм растений, причем оно представляет собой результат непосредственного воздействия патогенного микроорганизма или его метаболитов. Таким образом, мы встречаемся здесь с реакцией иммунитета, имеющей характер автокаталитиче-ского процесса, в котором в единый узел увязаны следующие звенья активирование дыхания, усиление процессов окислительного фосфорилирования, использование этой энергии на синтез дополнительных количеств ферментного белка, использование этого белка для дальнейшего активирования дыхания. [c.330]

    Схема механизма действия глюкокортикоидных гормонов описана в гл. 44 и изображена на рис. 44.1. Многочисленные примеры подтверждают концепцию о том, что эти гормоны влияют на специфические внутриклеточные процессы путем изменения содержания в клетке критически важных белков, как правило, ферментов. Последнее определяется тем, что глюкокортикоиды способны регулировать в клетках-мишенях скорость транскрипции специфических генов. Для этого требуется, чтобы стероид-рецепторный комплекс связался со специфическими областями ДНК вблизи сайта инициации транскрипции и далее чтобы эти области определили специфичность ответа. Каким именно образом это связывание стимулирует или тормозит транскрипцию, как обеспечивается тканевая специфичность, почему один и тот же ген может быть активирован в одной ткани и ингибирован в другой,—эти и многие другие принципиальные вопросы остаются открытыми. [c.217]


    Антиоксиданты, модифицируя структуру и функциональную активность мембран, оказывают воздействие на клеточный метаболизм различными способами в результате взаимодействия со свободными радикалами, рецепторами, путем ингибирования и активирования ферментов, непосредственного встраивания в мембрану, взаимодействия с генетическим аппаратом клетки (рис. 30). [c.123]

Рис. 51. Активирование и ингибирование действия фермента Рис. 51. Активирование и <a href="/info/1389279">ингибирование действия</a> фермента
    Учитывая известные экспериментальные исследования активирования и ингибирования ферментов метаболитами, Термониа и Росс [194, 195] усовершенствовали схему реакции гидролиза, объединяющую фосфофрукто-киназную и пируваткиназную реакцию. Используя цифровой анализ кинетических уравнений, они подтвердили наличие колебаний концентраций фруктозо-6-фосфата, пирувата, фосфоенолпирувата, фруктозо-1,6-дифосфата и АОР. [c.124]

    Ионам Са принадлежит центральная роль в регуляции многих клеточных функций. Изменение концентрации внутриклеточного свободного Са является сигналом для активации или ингибирования ферментов, которые в свою очередь регулируют метаболизм, сократительную и секреторную активность, адгезию и клеточный рост. Источники Са могут быть внутри- и внеклеточными. В норме концентрация Са в цитозоле не превышает 10 М, и основными источниками его являются эндоплазмати-ческий ретикулум и митохондрии. Нейрогормональные сигналы приводят к резкому повышению концентрации Са (до 10 М), поступающего как извне через плазматическую мембрану (точнее, через потенциалзависимые и рецепторзависимые кальциевые каналы), так и из внутриклеточных источников. Одним из важнейших механизмов проведения гормонального сигнала в кальций—мессенджерной системе является запуск клеточных реакций (ответов) путем активирования специфической Са -кальмодулин-зависимой протеинкиназы. Регуляторной субъединицей этого фермента оказался Са -связывающий белок кальмодулин (мол. масса 17000). При повышении концентрации Са в клетке в ответ на поступающие сигналы специфическая протеинкиназа катализирует фосфорилирование множества внутриклеточных ферментов —мишеней, регулируя тем самым их активность. Показано, что в состав киназы фосфорилазы Ь, активируемой ионами Са , как и КО-синтазы, входит кальмодулин в качестве субъединицы. Кальмодулин является частью множества других Са -свя-зывающих белков. При повышении концентрации кальция связывание Са с кальмодулином сопровождается конформационными его изменениями, и в этой Са -связанной форме кальмодулин модулирует активность множества внутриклеточных белков (отсюда его название). [c.296]

    Как и любой другой биологической системе, фотосин-тетичей<ому аппарату свойствен метаболический тип регуляции, основанный на изо- и аллостерическом активировании и ингибировании ферментов промежуточными и конечными продуктами метаболизма. Подобные механизмы участвуют, с одной стороны, в регуляции синтеза пигментов и кофакторов (НАДФ, ФАД), с другой — в работе темпового биохимического аппарата самого фотосинтеза (цикл Кальвина). [c.109]

    Таким образом, участие антиоксидантов в механизме покоя семян, по-видимому, обусловлено ингибированием ферментов антиоксидантной системы защиты растений, в особенности, пероксидазы, что проявляется в экспериментах как in vitro, так и in vivo. Понижение активности фермента высокими концентрациями антиоксидантов способствует углублению покоя семян пшеницы, а активирование пероксидазы — ускоренному их выходу из состояния гипобиоза и быстрому прорастанию. [c.205]

    Особую роль в организме играет циклический аденозин-3, 5 -монофосфат (цАМФ, 303), который образуется ферментативно внутри клетки из АТФ после воздействия соответствующего гормона на клеточные рецепторы (см разд. 2 5 1). Например, повышение содержания гормона адреналина (первичного сигнала) в крови приводит к синтезу внутриклеточного цАМФ (вторичного сигнала, регулятора и усилителя гормонального сигнала), который вызывает ингибирование синтеза запасного топлива - гликогена и готовит клетку к выработке энергии Так, скелетные мышцы, печень и другие ткаии в условиях стресса мобилизуются адреналином и цАМФ к массированной переработке энергетических резервов для синтеза высокоэнергетических молекул АТФ. Полагают, что алкалоиды чая и кофе (см разд. 5.4.9) связывают фермент, который гидролизует цАМФ после передачи сигнапа. Это обстоятельство приводит к увеличению концентрации цАМФ в клетке и активированию ею фосфорилазы, стимулирующей сердечную деятельность и глико-генолиз в печени, т.е. к появлению тонизирующего эффекта [c.167]

    В работающей мышце накопление АМФ, обусловленное тратой АТФ, вызывает аденилирование и активирование фосфорилазы Ь. В покое, наоборот, высокие концентрации АТФ, вытесняя АМФ, приводят к аллостерическому ингибированию этого фермента путем деаденилирования. [c.293]


    Биохимические функции. Катехоламины действуют на клетки-мишени по мембрано-опосредованному механизму, чему в немалой степени способствует гидроксилирование кольца и боковой цепи этих соединений. Катехоламины взаимодействуют с а- и р-адренергическими рецепторами, локализованными в мембранах клеток-мишеней. Адреналин взаимодействует с обоими типами рецепторов, а норадреналин преимущественно с а-рецепторами. Каждая группа рецепторов разделяется на две подгруппы, а именно a и а2, а также (3 и Группа а[-, а2-рецепторов проявляет эффекты сосудосуживающего действия, сокращения гладких мышц, ингибирования липолиза. Действие р-рецепторов связано с активацией аденилатциклазы, образованием цАМФ и последующим фосфорилированием белков. Например, адреналин, взаимодействуя с р-рецепторами через систему вторичных посредников, активирует протеинкиназу, которая фосфорилирует ряд цитоплазматических белков. Таким образом, адреналин регулирует гликогенолиз в печени и в мышцах, а также глюконеогенез в печени. Мобилизация гликогена в мышцах происходит под действием фермента фосфорилазы, которая находится в виде неактивного димера (форма Ь) или активного тетрамера (форма а). Активированная посредством адреналина протеинкиназа фосфорилирует фермент киназу фосфорилазы Ь, что приводит к ее активации  [c.156]

    Приведенные доводы тем не менее не могут до конца объяснить наблюдаемой обратной зависимости между комплексообразующей способностью иона металла и его активностью в составе фермента. Интересное объяснение этой зависимости дал Айчхорн [64, 78], который считает, что присоединение иона металла к белковой молекуле вызывает не только ее активирование, но связано также с понижением свободной энергии системы. Количество донорных групп в биологических лигандах, к которым может присоединиться металл, очень велико. Обычно ион металла занимает в первую очередь те места в полидентат-ной молекуле лиганда, которые обусловливают каталитическую реакцию. Избыточные ионы М участвуют в комплексообразовании с другими донорными атомами белковой молекулы или субстрата, не имеющими отношения к каталитическому процессу, что приводит к его ингибированию. Поэтому зависимость ферментативной активности системы от концентрации М обычно проходит через максимум. Чем выше способность М к комплексообразованию, тем при более низких его концентрациях будет проявляться ингибирующее действие. В присутствии таких сильных комплексообразователей, как Си 2+ и Р(12+, ингибирующий эффект превалирует над каталитическим уже при очень низкой концентрации этих ионов, и дальнейшее повышение концентрации сопровождается только еще большим ингибированием реакции. В случае же слабых комплексообразователей необходим большой избыток М даже для координации с самыми активными центрами белка и суб- [c.259]

    Р-фермент, или растительная фосфорилаза, впервые изолирована Хейнсом. Позднее была получена из картофеля в виде гомогенного препарата 1180]. Очищенный фермент с молекулярной массой 207 ООО содержит 2 моль пиридоксаль-5-фосфата на 1 моль. В отличие от фосфорилазы животных у него отсутствуют в качестве структурных компонентов серинфосфат и нуклеотиды, не наблюдается активирование аде-ниловой кислотой. Картофельная фосфорилаза содержит 6 сульфгидрильных групп на 1 моль, тормозится п-хлормеркурибензоатом, причем ингибирование лищь частично снимается прибавлением цистеина. Катализирует не только распад, но и синтез полисахаридов затравками могут служить тетраоза и высшие сахариды (мальтотриоза для этой цели малоактивна). [c.198]

    В настоящее время многие исследователи объясняют процесс активного переноса веществ через мембраны с точки зрения гипотезы мембранных переносчиков [46]. Согласно этой гипотезе, в мембранах находятся специфические молекулы-переносчики, способные обратимо связывать поглощаемые ионы или молекулы и переносить их через мембрану. Полагают, что основная роль в функционлровании мембранных переносчиков принадлежит специфическим белкам типа транслоказ или пер-меаз. Этим можно объяснить высокую селективность поглощения, поскольку именно белки обладают ярко выраженной структурной специфичностью к самым различным соединениям. Косвенным подтверждением участия белков в поглощении служат довольно многочисленные результаты работ с хлорамфени-колом, когда ингибирование синтеза белка приводило к существенному снижению поглощения [46]. В связи с этим становится понятным, почему перенос веществ через плазмалемму, активированный фотосинтезом или дыханием, можно затормозить или полностью приостановить с помощью различных ингибиторов ферментов [39, 52]. Поскольку хлорамфеникол и фтор-урацил являются ингибиторами синтеза ферментов и РНК, можно допустить, что активный перенос молекул и ионов тесно связан с синтезом белковых соединений. [c.205]

    В основе действия всех фосфорорганических инсектицидов лежит общий механизм, а именно процесс ингибирования холинэстера-зц909-911 Известно, что ацетилхолин присутствует во всех организмах, обладающих сколько-нибудь развитой нервной системой, а также, что нервно-мышечная передача включает ферментативное расщепление его на холин и уксусную кислоту. Этот процесс кинетически может быть представлен как равновесие между ацетилхо-лином и ферментом (холинэстеразой) и активированным комплексом. В последующих двух стадиях происходит образование и диссоциация комплекса ацетилированного фермента и холина  [c.558]

    Молекула глюкозо-6-фосфата изомеризуется в молекулу фрук-тозо-6-фосфата. Реакция сопровождается незначительным изменением свободной энергии и поэтому легко идет в обоих направлениях. Фрук-тозо-6-фосфат фосфорилируется в положении 1. Донором фосфата служит АТФ. Реакция в клетке практически необратима. Вторичное фосфорилирование молекулы фруктозы приводит к ее дальнейшему активированию. Реакция катализируется фосфофруктокиназой, относящейся к числу регуляторных ферментов. Активность фосфофруктокиназы ингибируется АТФ и стимулируется АДФ и фосфатом. Высокое отношение АТФ к АДФ в клетке приводит к ингибированию этого фермента и соответственно снижению скорости гликолиза. Фосфофрук-токиназа — основной регуляторный фермент гликолитического пути. [c.182]

    Открытие способности сАМР стимулировать превращение фосфорилазы Ь в фосфорилазу а указывало на то, что это действие обусловлено либо активированием киназы фосфорилазы, либо ингибированием про-теинфосфатазы-1. Имеющиеся данные свидетельствуют о том, что in vivo для регуляции гликогенолиза используются оба пути. сАМР передает гормональный сигнал, активируя фермент, называемый сАМР-зави-симой протеинкиназой (сАМР-ПК) [4]. Этот фермент состоит из двух регуляторных (R) субъединиц, каждая из которых связывает две молекулы сАМР, и двух каталитических (С) субъединиц, в которых локализован активный центр [33]. При активации, осуществляемой сАМР, происходит диссоциация комплекса R2 2  [c.78]

    Выявлено, что при окислении медленно окисляемых субстратов, таких как аскорбиновая кислота, в механизме действия пероксидазы заложен сложный регуляторный механизм, имеющий биологическое значение. В основе этого механизма лежит способность самих субстратов регулировать процесс окисления. При этом аскорбиновая кислота, являющаяся основным антиоксидантом растений, может активировать реакции собственного пероксидазного окисления. Предложено, что данный регуляторный механизм обеспечивает выполнение избирательной антиоксидантной функции пероксидазы в растениях. Установлено биологическое значение эффекта активации пероксидазы в реакциях окисления медленно окисляемого субстрата в присутствии быстро окисляемого и ингибирование активности фермента высокими концентрациями субстрата. Выявленные закономерности позволяют понять механизм действия большого количества соединений, используемых в предпосевной обработке семян и обладающих стимулирующим, ретардантным, ингибирующим действием в отдельности, а также в различных сочетаниях. Пероксидаза входит в состав комплекса ферментов, катализирующих окисление различных соединений, используемых в аэробных метаболических процессах, интенсивность которых возрастает в процессе набухания и прорастания семян. До сих пор являются спорными вопросы относительно эффектов активирования всхожести семян низкими концентрациями соединений и механизмы понижения всхожести семян высокими концентрациями веществ. На основании полученных данных мы предложили механизм участия пероксидазы в этих процессах. Поскольку фермент является показателем проте- [c.69]

    Наличие обширной субстратсвязывающей области в активном центре пероксидазы создает условия для связывания сразу нескольким молекулам субстратов одинаковых или разных по строению, при возможности только одному из них участвовать в каталитическом процессе. Тогда как действие другого субстрата проявляется в регулировании (активировании или ингибировании) ферментативной реакции. При этом реализуется принцип один окисляется, а другой регулирует каталитический процесс. Причем разные по природе субстраты связываются в различных участках активного центра фермента или в области расположения регуляторного участка. [c.140]

    Сущность ее сводится к тому, что пространственное соответствие структуры субстрата и активного центра фермента создается в момент их взаимодействия друг с другом, что может быть вьфажено формулой перчатка—рука . При этом в субстрате уже деформируются некоторые валентные связи и он, таким образом, подготавливается к дальнейшему каталитическому видоизменению, а в молекуле фермента происходят конформационные перестройки. Гипотеза Кошланда, основанная на допущении гибкости активного центра фермента, удовлетворительно объясняла активирование и ингибирование действия ферментов и регуляцию их активности при воздействии различных факторов. В частности, конформационные перестройки в ферменте в процессе изменения его активности Д. Кошланд сравнивал с колебаниями паутины, когда в нее попала добыча (субстрат), подчеркивая этим крайнюю лабильность структуры фермента в процессе каталитического акта. [c.110]

    Однако индукция ферментов микросомального окислении (5-кратное введение фенобарбитала) приводила к 2—5-кратному увеличению продукции малонового диальдегида, что свидетельствует об активации перекисного окисления в этих условиях. Это не значит, что возможны обратные отношения. В условиях активирования реакции перекисного окисления липидов комплексом железа с АДФ наблюдается ингибирование метаболизма алпренолола [288]. Более того, в присутствии высоких концентраций органических гидроперекисей происходит деструкция цитохрома Р-450 [288, 358] и возможны ультраструктур-ные изменения в гепатоцитах [287]. [c.126]

    В результате этого регуляторного каскада при ограниченном поступлении активированных атомов азота аденилирование ингибируется, а деаденилирование стимулируется. Глутамин-синтетаза становится менее чувствительной к кумулятивному ингибированию по типу обратной связи, и поступление глутамина соответственно увеличивается. Почему для регуляции этого фермента используется каскадный механизм Одно из преимуществ этого механизма состоит в том, что он усиливает сигналы, как, например, при свертывании крови (разд. 8.17) или при регуляции метаболизма гликогена (разд. 16.17). Еще одна причина состоит, видимо, в том, что существенно возрастает возможность аллостерического контроля, так как каждый фермент каскада становится независимым объектом регуляции. Для интеграции метаболизма азота в клетке необходимо воспринимать и перерабатывать большое количество сигналов. Возможности одного белка в этом смысле ограничены, даже если молекула настолько чувствительна, как молекула глутамин-синтетазы Возникновение каскадной регуляции обеспечило много дополнительных регуляторных участков и позволило тонко настраивать поток азота в клетке. [c.247]


Смотреть страницы где упоминается термин Активирование и ингибирование ферментов: [c.143]    [c.132]    [c.422]    [c.324]    [c.59]    [c.432]    [c.159]    [c.65]    [c.58]    [c.114]    [c.133]   
Смотреть главы в:

Биологическая химия Изд.3 -> Активирование и ингибирование ферментов




ПОИСК





Смотрите так же термины и статьи:

Ингибирование

Ингибирование ферментов



© 2025 chem21.info Реклама на сайте