Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение кремния в алюминиевых сплавах

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    При определении кремния в алюминиевом сплаве для построения градуировочного графика были получены следующие результаты массовой доле = 1,70% соответствовала = О, массовой доле сОд = 0,72% соответствовала А8 = -0,48. Построить градуировочный график и определить массовую долю (%) [c.177]


    В настоящее вре.мя разработаны. методы определения небольших количеств кобальта путем облучения анализируемых образцов нейтрона.ми в ядерных реакторах [1095] в горных породах, морских отложениях и метеоритах [1335, 1336, 1341], в металлической сурьме [188], в электролитном цинке высокой чистоты [873], в алюминиевых сплавах [510], в железе [388], в кремнии высокой чистоты [869], в сталях [380, 1093], в биологических тканях [893, 1177] и других материалах [798, 1444]. [c.173]

    Сплавы цинко-алюминиевые. Спектральный метод анализа Магний первичный. Спектральный метод определения натрия и калия Магний первичный. Спектральный метод определения кремния, железа, никеля, алюминия, меди, марганца и титана [c.821]

    Сплавы алюминиевые литейные и деформируемые. Методы определения кремния [c.571]

    Анализ алюминия и его сплавов обычно сводится к определению железа, кремния, меди, магния, марганца, реже калия, натрия, цинка, кальция, никеля. Добавление указанных элементов изменяет свойства чистого алюминия. Так, марганец повышает устойчивость к коррозии, но понижает пластичность магний уменьшает массу и повышает прочность кремний увеличивает прочность, но уменьшает пластичность медь увеличивает прочность. Состав некоторых алюминиевых сплавов приведен в табл. 36. [c.377]

    ОПРЕДЕЛЕНИЕ КРЕМНИЯ В АЛЮМИНИЕВЫХ СПЛАВАХ [c.61]

    Было проведено определение поверхностного водорода для различных алюминиевых сплавов, содержащих магний, кремний, цинк и медь. Полностью устранить эффект образования поверхностного водорода не удается. Поэтому при расчете результатов анализа следует вводить соответствующую поправку. [c.229]

    Порфирьев Н. А. Колориметрический метод определения кремния в алюминиевых сплавах. Уч. зап. Казанск. ун-та, 1948, 1С8, кн. 1, с. 85—91. 5286 [c.204]

    Тихонова А. А. Определение кремния и меди в алюминиевых сплавах на фотоколориметре Ланге, Зав. лаб., 1945, 11, Л 6, с. 618 — 617. 5824 [c.223]

    Тихонова А. А. Определение молибдена в легированных сталях на фотоколориметре. Зав. лаб., 1949, 15, № 1, с. 107—108. 5825. Тихонова А. А. Определение хрома в алюминиевых сплавах на фотоколориметре. Зав. лаб., 1949, 15, № I, с. 108—109. 5826 Тихонова А. А. Определение кремния в алюминиевых сплавах фотоколориметрическим методом. [М.], Оборонгиз, 1949. 8 с. с илл. [c.223]

    Анализируют состав плоского поверхностного слоя пробы цилиндрической формы. Пусть это будет образец из алюминиевого сплава диаметром в 30 мм. Определение меди, железа, цинка, марганца, кремния с успехом можно выполнять, используя рентгеновскую трубку типа БХВ-9, палладиевый анод. Напряжение на трубке 25 кв. Сила тока на аноде 80 ма. [c.268]


    В случае определения алюминия, кремния, калия, серы и кальция в продуктах цементного производства фактически изменится лишь процесс подготовки пробы и потребуется соответствующий комплект эталонов. Если в литых образцах алюминиевых сплавов при подготовке пробы достаточно заточить анализируемую поверхность, то при анализе порошков желательно, чтобы проба имела вид таблетки, спрессованной из порошка с выбранной крупностью зерен. [c.269]

    Вначале определяют основной элемент сплава — алюминий. Для этого берут два электрода из чистого алюминия (или один угольный, один из алюминия), включают ток и просматривают спектр на стилоскопе. Заметив интенсивные полосы спектра в области 5400—4400 А, ставят индикаторную стрелку прибора на самый интенсивный кант полосы 4842 А. Затем алюминиевые электроды заменяют на угольный электрод и испытуемый сплав. Если в спектре наблюдаются интенсивные полосы А10 (почти такой же интенсивности, как в чистом алюминии), то основа сплава — алюминий. После этого в спектре сплава определяют наличие меди по линиям 5782, 5292, 5218, 5153, 5105 А магния — по линиям 5183 5172, 5167 А марганца — по линиям 4823, 4768 А никеля — по линиям 5035, 5017, 4980, 4984 А кремния — по линии 3905 А. Определение кремния следует вести в искровом режиме. [c.172]

    Определение кремния в алюминиевых сплавах [c.107]

    В последнее время для определения кремния в алюминиевых сплавах широко применяется фотометрический метод, основанный на образовании кремнемолибденовой сини. Этот метод позволяет определять кремний при его содержании в сплаве от [c.93]

    Сущность метода. Для определения кремния в алюминиевых сплавах при его содержании от 16 до 30% используется реакция образования кремнемолибденовой гетерополикислоты с последующим ее восстановлением до молибденовой сини. [c.99]

    Литейные алюминиевые сплавы [57]. Для придания алюминиевым сплавом хороших литейных свойств в них вводят легирующие элементы в количествах, достаточных для образования эвтектики и в то же время дающих возможность упрочнять сплавы путем закалки и старения. Такими элементами являются обычно кремний, медь или магний. Нами были исследованы литейные сплавы, в которых основным легирующим компонентом является кремний (АЛ4, АЛ5, АЛ9 и АЛ 10В). Присутствие в этих сплавах большого количества кремния оказывает определенное влияние на их характер анодирования и на свойства получаемых окисных пленок. По сравнению с пленками, полученными на деформируемых сплавах, пористость пленок на сплавах АЛ4, АЛ5 и АЛ9 увеличивается, до 20—26%, а па вторичном сплаве АЛ 10В — до 70%. Повышение пористости можно объяснить двумя причинами во-первых, вследствие образования в пленке микротрещин вокруг включенных в окись кристаллов кремния и, во-вторых, из-за наличия в самом сплаве микропор (мелких пустот), которые остаются в пленке (особенно у сплава АЛ 10В). [c.140]

    Метод определения титана и кремния 11 021.009.3—83 Сплавы алюминиевые для изделий электронной техники. [c.31]

    Следовательно, отбору и подготовке пробы необходимо уделять максимум внимания, ибо без этого применение даже самых совершенных способов и приемов анализа на самом современном оборудовании может дать совершенно ложный результат. Непосредственное выполнение анализа начинается с момента правильного пробоотбора и качественной подготовки отобранного материала к анализу. Правила выполнения этих операций обычно устанавливают только после изучения конкретных свойств анализируемых объектов. Рассмотрим, например, пробоотбор в условиях работы плавильной печи. В нее загружено 10—30 т сырья на алюминиевой основе. Это сырье сравнительно легкоплавкое, характеризуемое малым удельным весом. Если для получения сплава определенного состава в этот жидкий металл вводят более тугоплавкую присадку с большим удельным весом (медь, марганец и пр.), то она осядет на дно ванны. Поскольку температура металла недостаточна для расплавления присадки, она медленно будет распространяться по составу сплава. Если отбор пробы выполнить преждевременно при плохом перемешивании расплава, то состав пробы не отразит средний состав металла в печи. Если металл слить, то в начальный период разлива с нижнего объема ванны пойдет металл, обогащенный до 8—12% присадкой вместо расчетных 7%, а к концу разлива (когда сливается уже верхний обьем) концентрация его будет ниже нормы (порядка 4—5%). Если разлив выполнять начиная с верхнего объема, картина станет обратной. Разлив металла в обоих этих случаях отразит эффект расслаивания компонентов по удельному весу. Аналогичное явление наблюдается и при добавках в этот сплав более легкого по удельному весу кремния, который всплывает на поверхность ванны и окисляется. За [c.140]

    Условия спектрографического анализа магниевых сплавов в общем не отличаются от описанных для определения состава алюминиевых сплавов ([56, 278] и др.). Отличия состоят главным образом в том, что в качестве подставного электрода используют пруток из чистого магния или спектрально чистого угля, а также парные электроды из анализируемого сплава (заточка на полусферу), время предварительного обыскривания составляет 30 сек (при определении железа и кремния 60 сек) и используются другие аналитичеокие пары линий. При определении кремния иногда рекомендуется медный -подставной электрод. [c.170]


    Кадариу нашел, что при определении кремния в силикатах и алюминиевых сплавах лучше употреблять хлорную кислоту,, чем серную. Хлорную кислоту рекомендовали также для растворения оксалата кальция перед титрованием перманганатом. Када-риу1 предложил применять хлорною кислоту для разложения шлаков, высушенного цементного теста, портландцемента, боксита или глины. Турек разлагал глину фтористоводородной и хлорной кислотами. После перевода образовавшихся перхлоратов в сульфаты анализ заканчивали обычными методами. [c.123]

    Большинство составляющих алюминиевых сплавов легко определяется методом атомной абсорбции. В ранних работах Гидли и сотрудников [31, 53], а также других авторов содержатся методики определения некоторых составляющих сплавов алюминия. В работе Белла [325] дана общая методика исследования алюминиевых сплавов. Белл не обнаружил никаких помех от различных компонентов сплава при определении Си, Мп, Mg, 2п, Ре, Сг, d, N1. Медь, по-видимому, увеличивает абсорбцию цинка в присутствии алюминия, но в недавней работе [326] отмечается, что этот эффект отсутствует, если использовать пламя воздух — ацетилен и трехщелевую горелку, Содержание магния и кальция в алюминии следует определять в присутствии лантана, который добавляют в качестве буфера. Образцы весом I г растворяют в 50% (по объему) НС1. Полученный раствор затем разбавляют таким образом, чтобы определяемый металл находился в оптимальном диапазоне концентраций. Если в растворе присутствует медь, то в него в процессе нагревания добавляют несколько капель 30%-ной Н2О2. Кремний отфильтровывают, если его концентрация превышает 1 % или если требуется произвести очень точное определение магния или меди. Отфильтрованный кремний удаляют с помощью НР и НЫОз, а остаток вновь растворяют в НС и добавляют к анализируемому раствору. При определении магния содержание алюминия в исследуемых и эталонных растворах поддерживается на уровне 1000 мкг/мл. В работе Белла при использовании двухлучевого прибора величина коэффициента вариации при определении цинка в различные дни составляла 0,7%. [c.178]

    Работа 12. Определение марганца, кремния, цинка, железа, никеля и олова в бронзе кремнемарганцовой марки Бр. КМЦ 3-1 Работа 13. Спектральный анализ алюминиевого сплава. Работа 14. Анализ сплавов методом фотометрического интер [c.135]

    Васенко Е. И. Колориметрический метод определения кремния в силумине и других алюминиевых сплавах. ЖПХ, 1946, [c.137]

    Носков М. М , Скорняков Г. П. и ЧукинаТ. П. Спектральный экспресс-анализ основных мартеновских шлаков с применением искрового режима дуги переменного тока. Зав. лаб., 1951, 17, № 4, с. 429—430. 4982 Носков Ф. Н. и Соколова В. М. Фотоколориметрическое определение кремния в алюминиевых сплавах. Зав. лаб., 1952, 18, № 2, с. 176. 4988 [c.194]

    Распознование типа сплава. Обнаружение в сплавах тех или иных химических элементов проводят преимущественно дробным методом при помощи микрокристаллоскопических и капельных реакций. Однако прежде всего желательно установить тип сплава. Распознавание типа сплава, как правило, не требует предварительного его измельчения и ведется на деталях бесстружковый методом анализа. Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др., медные сплавы — олово, цинк, свинец, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.384]

    Железо и кремний определяют из отдельных навесок методами, описанными выше для алюминиевых сплавов. Чаше всего для определения кремния пользуются фотометрическим методом, изложенным на стр. 96, а для определения железа — фотометрическим методом с применением реагента ортофенан-тролин. [c.178]

    Стремление упростить очень сложную аппаратуру привело П. И. Л е-бедева к выработке нового способа определения кислорода в стали, который автор называет вакуум-алюминиевым. Способ основан на том, что при температурах, лежащих выше температур плавления чугуна и стали, алюминий восстанавливает не только закись железа, но и закись марганца, окись углерода и двуокись кремния. Отсюда ясно, что если плавить стальной образец с добавкой алюминия в вакууме, во избежание окисления кислородом воздуха, и подбирать все прочие условия опыта (температуру, процент вводимого алюминия, время выдержки и пр.) так, чтобы алюминий количественно восстанавливал все окислы, заключающиеся в стальном образце, го, определяя затем химическим путем в полученном сплаве количество окиси алюминия, можно считать, что кислород окиси алюминия соответствует содержанию общего кислорода в образце стали. [c.202]

    Мешают определению (без экстракции комплексной кислоты) следующие ионы кремний в больших концентрациях, железо(III) в присутствии хлорида или сульфата, восстановители, хром (VI), мышьяк(V) и цитрат. Висмут(III), торий(IV), хлорид н фторид влияют на развитие окраски. Кремний можно удалить при кипячении раствора с концентрированной H IO4. Железо(III) можно связать в комплекс с фторидом, избыток которого удаляют введением борной кислоты. Борную кислоту можно использовать и для связывания фторидов, присутствующих в исходном анализируемом растворе. С использованием экстракции комплексной гетерополикислоты был разработан метод определения фосфора. Метод был применен для анализа практически всех фосфорсодержащих материалов стали [139, 140J, железных руд [141], алюминиевых, медных и никелевых сплавов с белыми металлами [142], воды [143, 144] и удобрений [145—147]. Работы по анализу удобрений [145—147] посвящены автоматизации очень точного метода определения фосфора с применением автоматических анализаторов. В анализаторы был заложен метод прямого измерения светопоглощения, а не дифференциальный вариант, который обычно используют для повышения точности определения. Полученные результаты позволяют заключить, что абсолютная ошибка измерения оптической плотности в интервале О—1,2 единицы не выше ошибки самого измерительного прибора (0,001 единицы поглощения). Следует отметить, что описанный метод по точности превосходит метод с применением молибдофосфата хинолина и, кро.ме того, обладает еще одним преимуществом — простотой выполнения определения. В биохимии метод применяли для определения фосфата в присутствии неустойчивых органических фосфатов [148] и неорганического фосфата в аденозинтрифосфате [149]. Метод был использован для анализа фосфатных горных пород [150]. В органическом микроанализе метод применяют после сожжения органических соединений в колбе с кислородом [151, 131]. [c.461]

    Термическая обработка сплавов с точкой плавления ниже 1100°, применяемая для определения линии солидус методом закалки, обычно не представляет трудности. В этом случае образцы запаивают в откаченные стеклянные или кварцевые трубочки и нагревают до соответствующих температур в условиях, описанных в главе 4. Некоторые сплавы, например алюминиевые, находясь в контакте со стеклом цри температурах, близких к линии солидус, легко загрязняются окисью кремния. Чтобы изб ежать соприкосновения исследуемого образца со стеклом, должны применяться алюминиевые кольца. Было установлено, что для полного отжига достаточно 30 мин. и в таких случаях температуру лучше всего регулировать вручную с помощью переменного сопротивления в цепи печи (при температурах до 1100 допускаются колебания не более 0,5°). В этом температурном интервале успех рассматриваемого метода в значительной степени зависит от легкости выявления микроструктуры сплава, а также и от того, насколько превращения, про-  [c.199]


Смотреть страницы где упоминается термин Определение кремния в алюминиевых сплавах: [c.4]    [c.119]    [c.193]    [c.192]    [c.132]   
Смотреть главы в:

Калориметрические (фотометрические) методы определения неметаллов -> Определение кремния в алюминиевых сплавах




ПОИСК





Смотрите так же термины и статьи:

Кремний определение

Сплавы алюминиевые

Сплавы кремния

алюминиевый



© 2025 chem21.info Реклама на сайте