Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение содержания магния в его растворимых солях

    При работе системы оборотного водоснабжения на технической воде наблюдается выпадение в осадок и ионов магния, в то время как при добавке 30 % дренажной воды его концентрация возрастает пропорционально Ку Из других малорастворимых солей, способных при определенных условиях к кристаллизации, следует рассмотреть сульфат кальция. Максимальная концентрация кальция в продувочной воде не превышает 5 мг-экв/л. Если условно принять, что весь кальций находится в виде сульфата, то содержание последнего в оборотной воде даже при трехкратном упаривании не превышает 714 мг/л, что ниже величины растворимости этого соединения в воде (2000 мг/л) при условиях, имеющих место в изучаемых охладительных системах промышленного водоснабжения [5]. Однако щелочность оборотной воды при отсутствии выпадения накипи не возрастает пропорционально Ку, а снижается в отдельных случаях. Такое кажущееся противоречие, как уже отмечалось, вызвано выдуванием летучего аммиака на градирне. [c.45]


    Технические схемы получения отдельных продуктов и режимы работы бассейнов и оборудования базируются на данных по растворимости солей в многокомпонентных растворах и методах расчета физико-химического анализа, а также расчетных методах определения плотности, давления пара, вязкости, теплоемкости растворов. Поваренную соль получают из хлоридных рассолов с малым содержанием сульфата кальция и магния или рассолов смешанного типа, содержащих [c.165]

    Определение минеральных форм питательных веществ в растениях, особенно в ранние фазы их развития, показывает более резкие различия в содержании элементов питания в зависимости от внешних условий, чем валовой анализ. Растения потребляют необходимые им питательные вещества почвы в форме минеральных растворимых соединений (азот в форме нитрат-ионов и ионов аммония, фосфор—фосфат-ионов, калий, кальций, магний в виде катионов растворимых солей и т. д.). Поступая в растения, минеральные питательные вещества используются на синтез органических веществ. [c.566]

    Определение содержания магния в его растворимых солях [c.294]

    До 1952 г. в СССР для оценки жесткости природных вод применялись так называемые градусы жесткости, которые определялись числом граммов СаО в 100 л природной воды. Один градус по этой шкале соответствовал 1 г СаО в 100 л воды или 0,01 г СаО в 1 л. Позже в СССР введен новый стандарт определения жесткости (ГОСТ 6055—51). Согласно этому стандарту, 1) Жесткостью воды называется содержание в ней растворимых солей кальция и магния, выраженное в миллиграмм-эквивалентах а литр воды. 2) Один миллиграмм-эквивалент жесткости отвечает содержанию 20,04 мг/л Са++ или 12,16 мг/л Mg++. 3) Для измерения малых жесткостей принимается тысячная доля миллиграмм-эквива-лента — микрограмм-эквивалент в литре воды . [c.177]

    Минеральные вещества входят в состав растительных тканей. Их природа и количество зависят от вида растительной ткани, условий произрастания и других причин. Минеральные вещества разделяют на растворимые и нерастворимые во время гидролиза полисахаридов. Растворимые минеральные вещества состоят из солей калия, натрия н других металлов с угольной, серной, соляной и кремневой кислотами. Нерастворимые вещества, которые после гидролиза полисахаридов остаются в лигнине, состоят из окислов кальция, магния, железа, марганца и их солей с фосфорной и кремневой кислотами. При определении качества сырья, предназначенного для гидролиза, интересуются содержанием в нем растворимых минеральных веществ, так как, переходя в раствор во время гидролиза, они вступают в реакцию с серной кислотой, понижают ее концентрацию, что замедляет процесс гидролиза. [c.21]


    Жесткость воды и ее определение. Жесткость воды обусловливается главным образом содержанием в ней растворимых солей кальция и магния. Жесткая вода, образуя накипь, приносит большой вред в котлах паросиловых установок. При стирке белья жесткая вода вследствие образования нерастворимых солей жирных кислот съедает мыло и вызывает пере]5асход его до 60% и более. В сельском хозяйстве жесткость природных вод определяют, чтобы выяснить пригодность воды для орошения,, в качестве питья для животных, для охлал<дения двигателей тракторов, автомашин и для других целей. Накипь лрепятствует. нормальному охлаждению водой стенок цилиндров двигателей, вызывает их перегрев,, ухудшает работу, ведет к перерасходу топлива, смазочных материалов и нередко является причиной выхода двигателей из строя., [c.170]

    Мешающие влияния. Определению мешают другие содержащиеся в воде свободные кислоты и кислые соли сильных кислот. Анализу не мешает высокое содержание магния и натрия. Наоборот, мешающее влияние оказывает растворимость СаСОз в воде. Поэтому щелочность очень мягких вод увеличивается в результате соприкосновения с СаСОз даже тогда, когда агрессивная СОа отсутствует. Ошибку в таких случаях можно до известной степени предотвратить, пользуясь специальным способом приготовления карбоната кальция (см. Реак- [c.169]

    Определение жесткости воды. Жесткость воды зависит от содержания в ней растворимых солей кальция и магния. Различают устранимую, или временную, и постоянную жесткость воды. Устранимая жесткость обусловлена наличием в воде кислых углекислых солей кальция Са(НСОз)2 и Mg (НСОз)з. При кипячении воды растворимые соли переходят в нерастворимые, которые осаждаются, и жесткость устраняется  [c.231]

    После удаления свободного SO2 путем выпаривания сульфитного щелока из сернистых соединений остается сульфит. Остаток растворяют в-воде и определяют в нем сульфит титрованием йодом, как и при определении общего SO2. Содержание свободного SO2 находят по разности между содержанием общего SO2 и SO2 в виде сульфита. Содержание серы, связанной в лигносульфоновом комплексе, вычисляют как разность между содержанием всей серы в сульфитном щелоке и суммой общего SO2, легкоотщепляемого SO2 и 50 , выраженных в процентах SO2. Сульфат-ионы 50 определяют при осаждении их в виде сульфата бария в кислой среде весовым методом или комплексометрически. Для определения суммы кальция и магния предназначен метод, основанный на реакциях кальция и магния с трилоном Б (кислая динатриевая соль этилендиамин-тетрауксусной кислоты). Образуется растворимое в воде комплексное соединение, которое разлагается в кислой среде, но устойчиво в щелочной. Реакцию проводят при pH 12. Титрование трилоном Б проводится в присутствии индикатора эри-хрома черного Т. Содержание натрия в сульфитных щелоках на натриевом основании рассчитывают по содержанию сульфита. В сульфитных щелоках на смешанном основании содержание натрия рассчитывают по разности между сульфитами кальция и натрия и сульфитом кальция, содержание которого находят расчетом по результатам трилонометрического анализа. [c.331]

    По методу Эшка, медленно нагревая, а затем прокаливая пробу при 850° со смесью окиси магния и соды, переводят общую серу в растворимые в воде сульфаты последние осаждают из раствора в виде сернокислого бария. Методика определения содержания серы дана в ГОСТе 8606-57. Этот метод занимает довольно много времени. Кроме того, во время прокаливания угля со смесью окиси магния и угленатриевой соли (смесь Эшка) некоторая часть серы может быть потеряна в виде летучих сернистых соединений, что внесет ошибку в результат. [c.26]

    Мешающие влияния. Определению мешают другие содержащиеся в воде свободные кислоты и кислые соли сильных кислот. Анализу не мешает высокое содержание магния и натрия. Наоборот, мешающее влияние оказывает растворимость СаСОз в воде. Поэтому щелочность очень мягких вод увеличивается в результате соприкосновения с СаСОз даже тогда, когда агрессивная СО2 отсутствует. Ошибку в таких случаях можно до известной степени предотвратить, пользуясь специальным способом п,JИг товления карбоната кальция (см. Реактивы ). Если первоначальная щелочность воды выше 1 мг-экв/л, то растворимостью СаСОз можно пренебречь. [c.169]

    Для определения воды применяют 1) высушивание в сушильных шкафах до постоянного веса 2) гетерогенную перегонку жидких материалов с углеводородами или галогенопроизводными и измерение объема отслаивающейся воды 3) поглощение воды перхлоратом магния, СаЗО , СаСЦ, Р Об и т. п. и определение содержания ее по привесу поглотителя 4) обработку исследуемого в-ва карбидом кальция и измерение объема выделившегося ацетилена. Очень часто применяют т.н.реактив Фишера — иод-пиридин-метаноль-ный р-р, в состав к-рого входит ЗОа. Под действием воды происходит разрушение иод-пиридинового комплекса и выделение молекулярного иода. Определение воды выполняют титриметрически. Точку эквивалентности устанавливают по появлению отчетливой желто-оранжевой окраски свободного иода титр реактива — по стандартному р-ру иода в метаноле. При помощи реактива Фишера определяют воду в нефтяных фракциях, красках, лаках и политурах, пищевых продуктах и т. д. Титриметрич. метод применяется также для изучения процессов, связанных с выделением или поглощением воды. Известно много вариантов метода. В большинстве случаев воду эк-страг ируют из растворимых соединений или взвесей в неполярных растворителях и затем определяют титрованием реактивом. При анализе окрашенных в-в, а также нек-рых суспензий и эмульсий точку эквивалентности устанавливают электрометрически. Онре-деление воды затруднительно, а иногда невозможно в соединениях, вступающих в реакцию с одним из компонентов реактива (окислы и гидроокиси металлов, соли 2-валентной меди и 3-валентного железа, борная к-та и окислы бора и др.) в подобных случаях либо пассивируют эти в-ва по отношению к реактиву, напр, введением избытка уксусной к-ты устраняют влияние аминов и гидразинов, либо определяют мешающие в-ва в отдельных пробах и вводят соответств. [c.42]


    Кальций-селективные электроды реагируют на активность ионов кальция в диапазоне от 10 до 10 моль/л. При меньшем содержании кальция в анализируемом растворе потенциал электрода не зависит от активности ионов кальция в водной фазе вследствие растворимости кальциевых солей фосфорных эфиров в воде. Определению Са"" мешают ионы стронция (A a/sr = 0,014), магния и бария, для которых коэффициенты селективности имеют несколько меньшую величину. Коэффициенты селективности А садаа и Ксъш равны З Ю" . При pH < 5,5 ионы водорода обмениваются с ионами кальция и потенциал электрода зависит от pH. [c.203]

    Моющие вещества и активные добавки. В связи с тем, что лаурилсульфат в течение многих лет был основным синтетическим моющим веществом в рецептурах шампуней, не удивительно, что в настоящее время он применяется в виде солей натрия, аммония, триэтаноламина и магния, что позволяет особенно успешно регулировать свойства рецептур, и прежде всего их окраску. Содержание свободного несульфоэтерифицированного жирного спирта строго контролируется, так как он сильно влияет на пенообразующие свойства. Не менее важно точное содержание неорганических солей, поскольку они сильно влияют на растворимость, вязкость и возможность совмещения разных ингредиентов. Содержание ионов тяжелых металлов, влияющих на прочность окраски, также необходимо контролировать. По-видимому, наиболее важным вопросом в усовершенствовании рецептур является выбор правильного соотношения соединений с разной длиной цепи. Установлено, что раздражение кожи вызывают гомологи g и С о. поэтому их присутствие нежелательно. С другой стороны, слишком большое содержание гомологов g и ig понижает растворимость и пенообразующую способность моющего средства. Поэтому был получен ряд продуктов, в которых гарантировались определенные соотношения в содержании различных гомологов ряда алкилсульфатов, и возможные отклонения от них находились в довольно узких пределах [101]. [c.436]

    В больших количествах даже щелочные металлы мешают определению магния фосфатным методом. При содержании 69 мг Mg и 5 г Na l осадок содержит до 9—10% и 0,8—1,2% Na при одно-и двукратном осаждении соответственно [794]. Калий соосаждает-ся в значительно меньших количествах, чем натрий. С другой стороны, соли аммония, щелочных и щелочноземельных металлов повышают растворимость осадка, особенно значительно растворяющее действие оксалатов и молибдатов. Увеличивая концентрацию [c.63]

    ВОДНОЙ жидкости досуха, вытягивании остатка спиртом и выпаривании спиртового раствора получается легкорастворимая масса соли, из которой [разбавленная] серная кислота выделяет слой маслообразной кислоты и уксусную кислоту главная часть последней остается в воде после раствора. Перегоняя этот водный раствор, можно получить значительное количество уксусной кислоты в довольно чистом состоянии. Натура кислоты была констатирована получением серебряной соли (несколько порций, дробным осаждением) и определением в ней содержания серебра. Кристаллизуя эту соль, получены были характерные для уксусно-серебряной соли плоские блестящие иглы. Приперегонке отделенной от водной жидкости и высушенной маслообразной кислоты довольно значительная ее часть перешла при 160—170°, а часть с более высокой точкой кипения [при охлаждении] застыла в кристаллическую массу и представляла не что другое, как ту твердую жирную кислоту, о которой упомянуто было выше и которая является наиболее характерным продуктом окислепия изотрибутилена хромовой смесью. Маслообразная кислота, собранная меяоду 160° и 170°, оказалась [нечистой] триметилуксусной. Для очищения из ее щелочной соли приготовлена была осаждением цинковая соль, и при разложении [серной кислотой] этой последней триметилуксусная кислота получилась в довольно чистом виде с ее характерными признаками — способностью застывать в кристаллическую массу и изменять при более сильном охлаждении (в смеси [снега] с солью) свой вид [становясь опалово-белой],— способностью давать характерные кислые соли калия и свинца [кристаллизующиеся в тонких шелковистых иглах] и не меиее характерную среднюю медную соль [зелено-бирюзового цвета, нерастворимую в воде, но] растворимую в спирте и образующую [темнозеленые, легко] выветривающиеся [на воздухе] кристаллы, [становящиеся непрозрачными и] разлагающиеся при нагревании с образованием белого пушистого возгона [—характерная реакция для некоторых солей триметилуксусной кислоты]. Порция маслообразной кислоты, сравнительно незначительная по количеству, собранная в пределах температуры между точкой кипения триметилуксусной кислоты и точкой кипения (приблизительно) твердой жирной кислоты,— а именно между 170° и 250°,— не застывала при охлаждении [до 0°]. Это содержапие заставило сначала подозревать присутствие здесь какой-либо особой кислоты [отличной от триметилуксусной и от твердой жирной кислоты], но при ближайшем рассмотрении оказалось, что то была смесь твердой кислоты с нечистой триметилуксусной. Нри обработке этой порции количеством щелочи, недостаточным для полнот нейтрализации, часть ее растворялась, а остаток застыл [при обычной температуре] в кристаллическую массу твердой кислоты растворилась тут, очевидно, триметилуксусная кислота, как более сильная. Пользуясь тем, что магнезиальная соль твердой кислоты очень трудно растворима в воде, а триметилуксусный магний растворим легко, щелочная соль кислоты (170—250°) была осаждена сернокислой магнезией. [c.358]

    Значительное содержание нейтральных солей в анализируемом растворе отргщательно влияет на определение магния, так как повышается растворимость Mg(OH)з [18]. [c.225]


Смотреть страницы где упоминается термин Определение содержания магния в его растворимых солях: [c.54]    [c.449]    [c.301]   
Смотреть главы в:

Основы аналитической химии Часть 2 -> Определение содержания магния в его растворимых солях

Основы аналитической химии Кн 2 -> Определение содержания магния в его растворимых солях




ПОИСК





Смотрите так же термины и статьи:

Магний определение

Магний соли, растворимость

Магний, определение солей

Определение содержания R-соли

Растворимость магния

Растворимость определение

Растворимость солей

Содержание Р-соли



© 2025 chem21.info Реклама на сайте