Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоиды поверхность

    Вблизи гидрофильных поверхностей плотность воды повышена и давление на стенке выше Рй- Структурная составляющая расклинивающего давления здесь положительна (П8>0). Резкое возрастание структурных сил отталкивания при утончении водных прослоек препятствует слипанию частиц гидрофильных коллоидов и обеспечивает устойчивость тонких пленок воды на гидрофильных поверхностях. В тех случаях, когда состояние поверхности является промежуточным между гидрофильным и гидрофобным, структура воды в граничных слоях изменена незначительно и структурное взаимодействие практически не проявляется. В этом случае взаимодействие м жду поверхностями, разделяющими водную прослойку, определяется, в соответствии с теорией Дерягина — Ландау—Фервея — Овербека (ДЛФО), молекулярной и электростатической составляющими расклинивающего давления [42, 43]. [c.16]


    Коагуляция коллоидов вызывается не только электролитами, но и взаимодействием противоположно заряженных коллоидов, наступающим при адсорбции одного коллоида поверхностью другого. Данный процесс играет некоторую роль при осветлении воды коагулированием. Необходимым условием взаимной коагуляции является равенство противоположных зарядов частиц золей. При несоблюдении этого условия коагуляция протекает неполно либо вовсе не наступает, независимо от того, прибавлено ли коагулирующего коллоида слишком мало или слишком много. Отсюда следует, что [c.138]

    Природные воды загрязнены гуминовыми веществами, глиной, кремневой кислотой и др. Частички всех этих веществ несут на себе отрицательный заряд. Удаляют эти примеси с помощью гидролизующегося коагулянта, например сернокислого алюминия. Эта соль при растворении <в воде гидролизуется с образованием гидроокиси алюминия, которая образует с водой коллоидную систему — положительно заряженный золь. При контакте противоположно заряженных коллоидов происходит их взаимная нейтрализация за счет адсорбции одного коллоида поверхностью другого. Необходимым условием взаимной коагуляции является равенство противоположных зарядов частиц золей. Если это условие не соблюдается, коагуляция протекает неполностью независимо от концентрации коагулянта. Таким образом, взаимная [c.137]

    Так, при объемной концентрации ф дисперсной фазы с размером частиц 6=10 м, равной 0,1%, что характерно для разбавленных коллоидов, поверхность дисперсной фазы, отнесенная к 1- 10 м (к I см , Зу составляет примерно 0,1 м . При увеличении размера частиц б на два порядка (б 10 м) такое значение [c.32]

    Приготовление катализаторов. Так как существует определенная связь между активностью и поверхностью катализатора, способ его приготовления сильно влияет на его активность. Для получения высокой степени дисперсности недостаточно ограничиться механическим дроблением и распылением катализатора необходимо использовать химические или физические методы прокаливание, осаждение, выделение из сплавов или через коллоиды (в электрической дуге, коллоидной мельнице). [c.242]

    Таким образом, изменения краевых углов, устойчивости коллоидов и пленок на гидрофильных поверхностях имеют во многих случаях общую причину — изменение структуры и толщины граничных слоев воды. [c.169]

    Свойства полимолекулярных пленок воды на поверхности кварцевых капилляров.— В кн. Поверхностные силы в тонких пленках и устойчивость коллоидов. М., Наука , 1974, с. 94. Авт. 3. М. Зорин, А. В. Новикова, А. К- Петров и др. [c.210]


    Ушакова В. С., Жиленков И. В. Диэлектрические свойства нитробензола на поверхности активного кремнезема.—В кн. Поверхностные силы в тонких пленках и устойчивость коллоидов. М., Наука , 1974, с. 167—170. [c.211]

    Коллоиды имеют максимально развитую поверхность, поэтому металлы в коллоидальном состоянии должны обладать очень высокой активностью. [c.58]

    Из элементарных курсов общей химии и физики известно, что вследствие сильно развитой межфазной поверхности гетерогенные дисперсные системы обладают большим избытком свободной поверхностной энергии и, следовательно, являются в принципе неустойчивыми. Позднее мы еще обсудим этот вопрос и покажем, что данное утверждение, которое во многих случаях не вызывает возражений, не настолько правильно, чтобы его абсолютизировать. Возникает вопрос, в какой мере законно применение термодинамических зависимостей к фазовым равновесиям в подобных системах. Гетерогенная дисперсная система может приобретать за счет замедляющих кинетику факторов известную устойчивость, позволяющую ей существовать в дисперсном состоянии достаточно долгое время. В течение этого времени вследствие молекулярного переноса (например, благодаря диффузии) устанавливается такое распределение ее компонентов в объеме и около межфазной поверхности, которое практически соответствует равновесию. Очевидно, что возникающее при этом состояние можно анализировать на основе соответствующих термодинамических представлений. В дальнейшем при рассмотрении вопроса об устойчивости лиофобных коллоидов мы увидим, что такая устойчивость действительно существует и именно этим объясняется широкое распространение подобных систем в природе и технике. Если какая-либо жидкость диспергирована в газе или п другой жидкости, то состояние относительного равновесия, о котором мы говорили выше, придает частицам термодинамически устойчивую форму — форму с наименьшей поверхностью, которая в простейшем случае является сферической. Не будем приводить других аргументов в пользу приложимости термодинамики равновесных систем к дисперсным гетерогенным системам и перейдем к рассмотрению самой термодинамики гетерогенных систем. [c.75]

    Несмотря на то что формулы (6.17) и (6.18) представляют собой довольно грубое приближение, они достаточно хорошо объясняют сущность явления. Начало теоретическому рассмотрению эффекта положили работы Дерягина (1937 г.) и Бергмана, Лёв-Беера и Цо-хера (1938 г.), целью которых было объяснить устойчивость лиофобных коллоидов. В более законченном виде эта теория была изложена Дерягиным и Ландау в 1941 г. Сведения о ее дальнейшем развитии и соответствующие дополнения читатель найдет в книге [2 1 и в монографии Фервея и Овербека [3 ]. Большая часть этих дополнений, а также и тех, которые были сделаны позднее, не затрагивает сущности явления в том виде, как оно изложено выше. Наиболее интересное из них относится к несимметричному слою с разными значениями фо-потенциала на обеих поверхностях (Дерягин, 1954 г.). Физически новыми моментами, которые еще не получили теоретической интерпретации, являются, во-первых, вве- [c.175]

    Параллелизм между влиянием электролитов на устойчивость гидрозолей и их влиянием на -потенциал наиболее отчетливо выражен в случае многовалентных и органических ионов, которые могут перезаряжать межфазную поверхность. В этом случае с повышением концентрации электролита устойчивость коллоида резко уменьшается и наступает быстрая коагуляция. Однако при еще более высоких концентрациях достигается вторая область устойчивости, связанная с тем, что вследствие перезарядки поверхности коллоид снова приобретает электрический заряд (но уже противоположного знака), который его стабилизирует. При достаточно высокой концентрации электролита -потенциал в любом случае уменьшается до нуля, и устойчивость коллоида пропадает. Подобное поведение лиофобных коллоидов подтверждает то решающее значение, которое имеют для их устойчивости электрические свойства поверхности частиц. [c.197]

    Размер и свойства поверхности аморфного осадка зависят от многих причин. Характер осадка в значительной степени обусловлен его специфическими, индивидуальными свойствами. Прежде всего это сказывается на степени связи частицы со средой. В коллоидной химии различают два типа коллоидов гидрофильные н гидрофобные . Гидрофобные осадки сравнительно слабо адсорбируют молекулы воды и выпадают в виде более плотных масс, порошков и хлопьев. Гидрофобные осадки занимают меньший объем и сравнительно хорошо отделяются фильтрованием. Примером этой группы осадков может быть сернистый мышьяк и др. сульфиды металлов . Для этой группы осадков электролиты сравнительно легко и быстро вызывают количественную коагуляцию. [c.60]

    Катодный никель кристаллизуется в виде волокнистых кристаллов весьма незначительного поперечного сечения (см. рис. 55, б). Поверхность осадка должна быть мелкокристаллической, бархатистой, имеющей незначительную полосчатость в вертикальном направлении. Эта полосчатость свидетельствует о том, что разряд ионов никеля совершается в растворе, содержащем коллоиды. На поверхности осадка допускаются незначительные неровности в виде куполообразных наростов высотой до 2 мм. Не должно быть следов выделения водорода (питтинги), шишковидных наростов, дендритов, а также появления темно-серой окраски осадка. [c.380]

    На существование пленки основных солей хрома указывают два обстоятельства структура осадка электролитического хрома имеет слоистый характер, который наблюдается при осаждении металлов из растворов, содержащих добавки адсорбирующихся коллоидов вращение катода заметно снижает выход по току (см. рис. 248). Это вызвано тем, что тонкий слой католита, образующегося на поверхно сти катода, смывается трением катода б раствор и отбрасывается центробежной силой. [c.532]


    Коллоиды, устойчивость которых обусловлена электрическими поверхностными зарядами, называют гидрофобными. Их можно скоагулировать добавлением электролитов. При этом ионы с зарядом, противоположным по знаку поверхностному заряду коллоидных частиц, защищают поверхность, давая возможность коллоидным частицам настолько сблизиться, что начинают действовать адгезионные силы Ван-дер-Ваальса частицы растут, объединяются и образуют осадок (коагулируют). [c.202]

    Растворы высокомолекулярных веществ, если они находятся в термодинамически равновесном состоянии, аналогично истинным растворам обладают абсолютной агрегативной устойчивостью. Высокая устойчивость коллоидных растворов ВМС определяется, в основном, двумя факторами — наличием на поверхности частиц двух оболочек электрической и сольватной (гидратной). Поэтому для коагуляции коллоидов высокомолекулярных соединений необходимо не только нейтрализовать заряд коллоидной частицы, но и разрушить жидкостную оболочку. Выделение ВМС из растворов по своему характеру отличается от коагуляции типичных гидрофобных коллоидов. Так. если для гидрофобных золей достаточно незначительных добавок электролитов, чтобы вызвать коагуляцию, то для высокомолекулярных веществ этого недостаточно. Для выделения дисперсной фазы полимеров необходимы высокие (вплоть до насыщенных растворов) концентрации электролитов. Явление выделения в осадок растворенного ВМС под действием большой концентрации электролита получило название высаливания (опыт 110,113). [c.227]

    Против такого жесткого разделения химических веществ на коллоиды и кристаллоиды высказался в 60-х годах XIX в. профессор Киевского университета И. Г. Борщов (1833—1878), который независимо от Грэма дал определение сущности коллоидного раствора (золя и коллоидной частицы. В частности, ои выдвинул идею о кристаллической структуре коллоидных частиц, высказал близкое к современному представление о коллоидной мицелле и наличии определенной связи между поверхностью коллоидных частиц и молекулами растворителя. Работы И. Г. Борщова позволяют считать его зачинателем русской коллоидной химии и одним и основоположников коллоидной химии как науки вообще. [c.280]

    Выше была рассмотрена группа коллоидных систем, объединенных под общим названием лиофобных (гидрофобных) коллоидов, которые обладают сильно развитой физической поверхностью раздела и большим избытком свободной поверхностной энергии. Благодаря этому образуются ионные и молекулярные адсорбционные слои, которые и сообщают агрегативную устойчивость коллоидным частицам, тогда как стремление свободной поверхностной энергии лиофобных (гидрофобных) коллоидов к самопроизвольному уменьшению в силу второго начала термодинамики делает их термодинамически неустойчивыми. Весьма характерным свойством этих коллоидных систем является, как известно, слабое взаимодействие между веществами дисперсной фазы и молекулами дисперсионной среды. [c.326]

    Аналогично этому гидратация гидрофильных коллоидов обусловливается электростатическими силами, т. е. за счет электрических зарядов, возникающих вследствие ионизации. На поверхности коллоидных частиц высокомолекулярных веществ образуются оболочки, состоящие из диполей воды, ориентированных в зависимости от знака заряда ВМС своим положительным или отрицательным концом. [c.333]

    В качестве адсорбентов могут служить активированный уголь, некристаллические осадки с сильно развитой поверхностью (гидраты окисей металлов, силикагель, алюмокремневые гели), ионнообменные вещества (смолы, алюмосиликаты и т. п.), мелкокристаллические осадки, суспензии, коллоиды. Поверхность этих веществ, вследствие того что она посылает в раствор ионы, заряжается и адсорбирует противоположно заряженные ионы. Уголь, например, выделяет в раствор ионы кислорода или водорода в за- [c.214]

    Несколько поучительных опытов было проведено Парсонсом который испытывал ряд металло В (цинк, железо, серебро, сурьму и т. д.) в растворах иода в различных органических растворителях (вода, спирт, ацетон, эфир, пиридин и т. д.). Всякий раз как только иодид испытываемого металла растворялся или переходил в коллоид, в данной жидкости коррозия быстро развивалась. Но, когда иодид металла не растворялся и не переходил в коллоид, поверхность металла превращалась в твердую иодистую соль, которая начинала защищать нижележащие слои материала от дальнейшего воздействия. В некоторых случаях может быть получена таким образом твердая пленка иодида значительной толщины, например при действии на серебро раство1ров иода в хлороформе (с.м. стр. 120) однако с нарастанием толщины пленки скорость воздействия постепенно падает. [c.16]

    Определенный интерес для понимания роли ГС в устойчивости коллоидов представляет модифицирование поверхности частиц в процессе адсорбции ПАВ, которое должно оказывать влияние на свойства и протяженность ГС. Структурные силы проявляющиеся при сближении частиц, будут зависеть в этом случае от величины адсорбции ПАВ, степени завершенности первого и второго адсорбционных слоев, определяющей гидро-фобизацию или гидрофилизацию поверхности частиц. С этой [c.176]

    В последнее время многие исследователи считают, что основными стабилизаторами эмульсий В/Н являются коллоиднодиспергирован-ные в нефти в виде мицелл асфальто-смолистые вещества [20, 21]. Ультрацентрифугированием эти коллоиды можно выделить из нефти в неизменном виде. Коллоидные частички, участвовавшие в образовании мицелл, накапливаются на поверхности раздела фаз нефть-вода и образуют механически прочную пленку. Установлено также, что величина поверхностного натяжения нефти обратно пропорциональна содержанию асфальтенов и коксуемости (по Конрадсону). В присутствии нафтеновых мыл эмульсии В/Н преимущественно образуются когда имеется избыточная нефть когда концентрация мыла настолько мала, что образуется молекулярно-дисперсный раствор когда вязкость нефтяной фазы больше, чем водной. Мыла нафтеновых кислот могут образоваться только в том случае, когда контактирующая с нефтью пластовая вода имеет щелочную реакцию, большинство же пластовых вод известных месторождений имеют кислую реакцию. [c.20]

    Все же одно обстоятельство, вытекающее из приведенных данных, весьма примечательно. Как видно из сравнения строчек 1, 2, 6 и 11 табл. 22, некоторые поверхностно-активные вещества пе только не предотвращают посерение ткани, но, наоборот, вызывают таковое. Вряд лп можно предположить, что это является результатом ионогенного действия, поскольку средство за № 2 анионогенное, за № 6 — неионогенное, а за № 11 — катионоактивное. Более вероятно, что наблюдаемый результат получился вследствие удаления защитных коллоидов с поверхностей частиц графи- [c.108]

    Коллоидную двуокись кремния используют в катализаторах в качестве носителя, компонента и связующего. Отдельные частицы имеют сферическую форму, и внутренняя поверхность у них отсутствует. Внешняя поверхность покрыта группами SiOH и этот коллоид обычно стабилизируют NaOH (доводя pH до 9) или NHg  [c.357]

    Простой, гго очень трудоемкий метод изучения ф.токуляции заключается в разбавлении образца эмульсии и подсчете числа частиц в единице объема под микроскопом. При этом смешение должно быть осторожным разбавляющая среда может быть защитным гидрофильным коллоидом (таким как желатин) или неионным детергентом. Кинг и Мукерджи (1939, 1940) использовали этот метод при изучении скорости коалесценции, опи определяли распределение частиц ио размеру для получения межфазной поверхности эмульсий как функции времени. Для облегчения измерения и подсчета капли фиксировали в слабом геле желатина и увеличенное оптическое изображение проектировали на экран. [c.104]

    Большое значение для технологии промывки и цементирования скважин имеют адсорбционные явления на поверхности раздела фаз. Тонкодисперсная твердая фаз а промывочных и тампонажных растворов является хорошим адсорбентом. В качестве адсорбен-тивов выступают защитные коллоиды в промывочных жидкостях, замедлители схватывания в тампонажных растворах и другие химические реагенты, вводимые в состав буровых жидкостей для регулирования их технологических свойств (понизители вязкости, водоотдачи и др.). Адсорбция широко используется при исследовании свойств твердой фазы коллоидных систем. Анализ изотермы адсорбции позволяет определить удельную поверхность твердой фазы (методом БЭТ), а также установить характер взаимодействия (физический или химический) адсорбтива с поверхностью адсорбента. [c.5]

    Усиливающее действие поли- и электролитных добавок к ПАВ основано на их совместном участии в адсорбционных процессах. На твердых поверхностях такие композиции образуют коллоиди-ро ванные адсорбционные слои с толстыми гидратными оболочками, которые обладают свойствами упруговязких веществ. Эти свойства обеспечивают большую устойчивость при контакте с движущейся по трубопроводу высоковязкой нефтью. Гидрофильность внутренней поверхности трубопровода под действием композиции ПАВ с активными до(5авками приводит к ослаблению силы молекулярного взаимодействия между твердой поверхностью и высоковязкой нефтью, к затруднению прилипания нефти к поверхности трубы. В результате резко снижаются предельное напряжение с/),вига нефти (в 10 раз) и коэффициент гидравлического сопротивления при ее движ ении по трубопроводу. [c.115]

    Идентичность структурного мотива аморфного ШУ различных месторождений не позволяет объяснить его многофункциональность и одинаково высокую активность ШУ с разной удельной поверхностью(от 2 до 500 м /г) и пористостью (от 4.7 до 41 %). При этом установлена критичность агрегации наноструктурных элементов ШУ по отношению к внешним условиям (с применением МУРР и A M). Наноразмерные элементы, являющиеся наиболее подвижными составляющими ШУ могут бьггь переведены в водный коллоид. В полимерной пленке, полученной из этого коллоида выявлены вновь образующиеся агрегаты. [c.174]

    Высокомолекулярные вещества, растворенные в хорошем растворителе образуют термодинамически обратимые, молекулярные, гомогенные, то есть однофазные, агрегативно устойчивые системы. Однако, в плохо растворяющей или в нерастворяющей среде высокомолекулярные вещества образуют дисперсные системы со свободными поверхностями раздела, поведение которых соответствует типичным микрогетерогенным дисперсным системам. Так, макромолекулы медленно диффундируют в растворе, не проникают через полунепроницаемые мембраны. Однако по некоторым свойствам растворы высокомолекулярных соединений имеют сходство с коллоидными системами, в связи с чем растворы высокомолекулярных соединений иногда называют молекулярными коллоидами. Так, например, размеры макромолекул соизмеримы, или даже превышают размеры коллоидных частиц. Впрочем, эта соизмеримость проявляется лишь по длине макромолекул, поперечные же их размеры соответствуют размерам обычных молекул. [c.28]

    При соударении двух частиц мелсду ними действуют силы как притяжения, так и отталкивания. Обычно считают, что первые силы — это силы вандерваальсова типа, тогда как в отношении вторых полагают, что они обусловлены взаимодействием заряженных поверхностей частиц. Когда преобладают силы притяжения, эффективность соударения велика, а устойчивость мала. Возрастание сил отталкивания затрудняет слипание частиц, т. е. повышает устойчивость системы. Следовательно, электрические свойства межфазной поверхности, наиболее отчетливо проявляющиеся при электрокинетических явлениях, должны иметь существенное значение для устойчивости коллоидных систем. Эти свойства сильно зависят от присутствия электролитов, чем и объясняется влияние последних на устойчивость коллоидов. [c.193]

    Лиофобные эмульсии термодинамически неустойчивы и требуют специальной стабилизации. Ее можно достичь тремя путями 1) созданием двойного электрического слоя, что бывает, например, в разбавленных эмульсиях 2) образованием на поверхности частиц дисперсной фазы сольватного слоя, препятствующего коалесценции 3) образованием на поверхности частиц со стороны дисперсионной среды стабилизируюпдей адсорбционной пленки, препятствующей коалесценции механически. Такие пленки могут быть образованы либо молекулярными коллоидами типа высокомолекулярных соединений (желатина, каучук), либо полуколлоидами типа мыл. Эти вещества, адсорбируясь, образуют лиогель, обладающий значительной механической прочностью. Прочность таких пленок зависит от концентрации эмульгатора. Существует оптимум структурно-механических свойств, выше и ниже которого система становится неустойчивой. Наличие такого оптимума прочности связано с подвижностью адсорбционного слоя, необходимой для покрытия случайных разрывов в пленке. В этом типе стабилизирующего действия эмульгатора хотя и [c.79]


Библиография для Коллоиды поверхность: [c.205]   
Смотреть страницы где упоминается термин Коллоиды поверхность: [c.600]    [c.312]    [c.316]    [c.12]    [c.168]    [c.174]    [c.10]    [c.10]    [c.18]    [c.110]    [c.91]    [c.95]    [c.8]    [c.196]    [c.104]   
Учебник общей химии (1981) -- [ c.330 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоиды

Коллоиды удельная поверхность

Коллоиды. также Золи обнаружение на поверхностя

Структура воды на поверхностях раздела вода — коллоид

Химия поверхности и коллоиды



© 2025 chem21.info Реклама на сайте