Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические применение

    Точный термодинамический - расчет ректификации нефтяных смесей представляет довольно сложную вычислительную задачу из-за сложности технологических схем разделения, используемых в промышленности, большого числа тарелок в аппаратах, применения водяного пара или другого инертного агента, из-за необходимое дискретизации нефтяных смесей на большое число условны компонентов и вследствие нелинейного характера зависимости констант фазового равновесия компонентов и энтальпий потоков от температуры, давления и состава паровой и жидкой ф 1з, особенно для неидеальных смесей. Таким образом, основная сложность расчета ректификации нефтяных смесей заключается в высокой размерности общей системы нелинейных уравнений. В связи с этим для разработки надежного алгоритма расчета целесообразно понизить размерность общей системы уравнений, представив непрерывную смесь, состоящей из ограниченного числа условных [c.89]


    Иллюстрацией применения уравнения (52) для расчета термодинамических функций нелинейных молекул служат данные, приведенные в табл. 5. [c.215]

    В практике термодинамических расчетов широкое применение нашло уравнение Битти—Бриджмена 149, 50], которое позволяет с достаточной точностью определять параметры состояния вещества в паровой фазе при плотности ниже критической. Это уравнение записывается в виде [c.37]

    Нанокластер состоит из атомов на поверхности и из атомов внутри кластера, причем для нанокластеров с размерами несколько нанометров ббльшая часть атомов находится на поверхности. Изучение свойств такой поверхности и таких внутренних атомов проводится с помощью двух подходов микроскопического и термодинамического. Применение микроскопического подхода, основанного на методах квантовой химии и расчета молекулярных орбиталей, может быть выполнено, подобно комплексам металлов, для весьма ограниченного числа атомов. Однако с увеличением размера кластера и точность расчета падает, и необходимо вводить различного рода ограничения. При термодинамическом [c.585]

    Расчетное исследование эффективности применения технологических схем со связанными материальными и тепловыми потоками (изображенной на рис. П-14, выполнено в работе [27]. Расчеты проводили для разделения широко- и близкокипящих смесей трех компонентов с относительными летучестями, равными 0 =10, ов = 2, ас=1 и ал = 3,7, ав=1,25 и ас = 1. Оценка разделительной способности установки определена на основе термодинамического к. п. д. Пт. [c.122]

    Подробно рассматриваются такие вопросы, как химический состав нефтей и нефтяных фракций очистка нефтяных фракций физическими и химическими методами теория термо-ката-литических процессов нефтепереработки (крекинг, пиролиз, риформинг, гидрирование, алкилирование) теоретические аспекты применения и эксплуатационных свойств нефтепродуктов. При этом большое внимание уделяется термодинамическим и кинетическим закономерностям, механизма реакций, теории катализа, теории сорбционных процессов и процессов экстракции, явлениям детонации, стабильности нефтепродуктов. [c.4]

    Невыполнение одной из этих стадий вследствие применения какой-либо специальной комбинации катализаторов или условий проведения реакции явилось бы препятствием для образования неопентана, хотя термодинамически это наиболее выгодный изомер. [c.26]

    До начала применения статистических методов точные термодинамические величины углеводородов были определены в основном при комнатной температуре. Теплота образования была получена использованием данных о теплоте сгорания и энтропиях, которые рассчитываются интегрированием экспериментальных теплоемкостей. Свободные энергии образования затем были рассчитаны по теплоте образования и изменению энтропии. Эти величины, отнесенные обычно к температуре 298° К, сведены в таблицы. [c.372]


    Сделанные замечания показывают, что метод условных температур может быть реализован на строгой термодинамической основе лишь в ограниченном числе частных случаев. Но так как в инженерных расчетах важно получить нужные результаты с достаточной для практики точностью, вопрос о правомерности применения того или иного. метода решают обычно путем оценки погрешностей, вызванных принятыми допущениями. Основные допущения метода условных температур состоят в следующем. [c.116]

    Термодинамические процессы в гипотетическом идеальном газе с показателем изоэнтропы Ау < 1. Вещества, у которых в состоянии идеального газа показатель изоэнтропы ку 1, в природе неизвестны. Действительно, из формул (3.41) и (3.42) следует, что для такого газа теплоемкости Ср и J отрицательны, а значит, подвод теплоты в изобарном или изохорном процессе сопровождается не повышением, как обычно, а понижением термодинамической температуры. Поэтому идеальный газ, у которого / у <Г 1, является, по существу, гипотетическим веществом, а расчеты процессов в таком газе имеют смысл только в рамках метода условных температур и служат для определения давлений, удельных объемов, перепадов энтальпий, в том числе удельных работ политропного сжатия или расширения и удельных работ, затраченных на преодоление сопротивлений. Отсюда непосредственно следует довольно существенное ограничение области применения метода [c.119]

    В принципе можно рассчитывать так же и процессы с отводом теплоты, но для этого должен быть заранее известен закон, по которому она отводится в процессе сжатия или расширения. Практически наиболее удобно такие процессы рассматривать как политропные. Если же закон, по которому отводится теплота, можно представить только в зависимости от термодинамической температуры, то применение метода условных температур себя не оправдывает, так как в процессе расчета на каждом шаге необхо-ди.мо обращаться к уравнению состояния, чтобы перейти от условной температуры к термодинамической. [c.120]

    Уравнение (16) имеет чрезвычайно большое значение в практике термодинамических расчетов п называется уравнением изотермы реакции о применении его к решению практических задач см. главу V. [c.92]

    Тщательный анализ экспериментального и расчетного материала, опубликованного в литературе, выполненный автором настоящей монографии, показал, что применение теории подобия для расчета термодинамических функций позволит с приемлемой точностью, при минимальном наличии исходных данных и относительно малой затрате труда и времени, производить вычисления термодинамических величин для широкого интервала температур. Метод применим для расчета термодинамических функций геометрически подобных молекул неорганических и органических соединений. [c.217]

    Здесь так же, как и в случае реакций полимеризации, применение давления выше атмосферного нри осуществлении процессов алкилирования в промышленных установках не является следствием термодинамической сущности этих реакций. Так, например, при сернокислотном алкилиро-вании изобутана пропиленом или изобутеном при комнатной температуре реакция должна нротекать практически до конца (табл. 3), особенно, если учесть, что обычно для подобного рода процессов в качестве сырья используются углеводородные смеси, содержащие значительный избыток парафинового углеводорода с целью предотвращения полимеризации олефина. [c.328]

    Существенный прогресс в развитии теории жидкого состояния достигнут в последнее время благодаря применению компьютерной техники — методов численного моделирования Монте-Карло и молекулярной динамики. Вначале эти методы были применены для описания свойств объемных жидкостей — термодинамических и физических — на основании потенциалов межмолекулярного взаимодействия. Это позволило, прежде всего, путем сравнения с известными свойствами реальных жидкостей уточнить вводившиеся межмолекулярные потенциалы. Наиболее надежные результаты получены для простых жидкостей, когда достаточно учесть сферически симметричные силы дисперсионного притяжения и борновского отталкивания, например в форме известного потенциала Леннарда — Джонса. [c.116]

    Статистический метод позволил использовать многие из этих величин для расчета термодинамических характеристик при высоких температурах, которые необходимы для осуществления процессов нефтепереработки. Стало возможным найти термодинамические свойства идеальных газов. Экспериментальные теплоты сгорания позволили затем определять величины АЯо, связывающие термодинамические функции реакции и чистых веществ. Применением расчетных и экспериментально найденных характеристик получили свободные энергии и теплоту образования веществ в широких температурных пределах. [c.372]


    Но при низких температурах и давлениях в присутствии обычно применяемого в таких реакциях кобальтового катализатора скорость обеих реакций очень невелика, и процесс в этих условиях практически не идет несмотря на то, что равновесный термодинамический состав удовлетворительный. Однако с увеличением температуры и давления скорость гидроформилирования возрастает намного быстрее, чем скорость гидрирования, что позволило определить условия применения этих процессов в промышленности. [c.217]

    Термин термодинамически идеальный растворитель в применении к растворам полимеров, таким образом, отнюдь не соответствует понятию хорошего растворителя, а, напротив, относится к растворителям, в которых полимеры высокой молекулярной массы находятся на грани высаживания, [c.32]

    Методы статистической физики охватывают как термодинамические состояния, так и кинетические явления, поэтому область ее применения шире, чем область применения термодинамики. Однако ввиду того, что свойства отдельных молекул н особенно законы их взаимодействия известны пока недостаточно, а также в связи с математическими трудностями, исходные положения статистической физики почти всегда включают в себя не полностью обоснованные предположения и существенные упрощения. Вследствие этого окончательные выводы статистической физики при их приложении к конкретным системам являются в общем случае неточными. Они оправдываются только для сравнительно простых систем. [c.28]

    Изменение энтальпии может быть во многих -случаях легко измерено, вследствие чего эта функция находит широкое применений при термодинамических исследованиях, особенно для процессов, протекающих при постоянном давлении. [c.50]

    Сравнение (2.45) и (1.77) показывает, что применение принципа микроскопической обратимости (2.40) и использование равновесных функций распределения приводит к обычному виду константы равновесия, полученному из термодинамических соображений. Это означает, что принцип детального равновесия Фаулера есть макроскопическое проявление принципа микроскопической обратимости Тол-мена [7, 8]. Отметим, наконец, что при интегрировании (2.12) по поступательным энергиям никаких предположений о функциях распределения энергии по внутренним степеням свободы реагирующих частиц не вводилось, требовалось лишь выполнение закона сохранения энергии и потому (2.45) справедливо при любом распределении. [c.64]

    Некоторые применения термодинамических потенциалов 125 [c.125]

    Для характеристики термодинамической устойчивостн электрохимических систем в водных средах весьма удобны диаграммы потенциал— отрицательный логарифм активности водородных ионов (диаграммы ё — pH), получив1иие широкое применение главным образом благодаря работам Пурбе и его школы. Для построения таких диаграмм, часто называемых диаграммами Пурбе, необходимо располагать сведениями об основных реакциях (окисления и восстановления, комплексообразования и осаждения), возможных в данной системе, об их количественных характеристиках (изобарно-изотермических потенциалах, произведениях растворимости и т. д.) и передать их графически в координатах S — pH. Для водных сред, естественно, наиболее важной диаграммой — pH следует считать диаграмму электрохимического равновесия воды. [c.186]

    Уравнение Ван-дер-Ваальса является неточным, применение же других, более точных уравнений состояния приводит к сложным формулам для термодинамических потенциалов чистых газов. Особенно сложно дальнейшее использование полученных формул для исследования химических равновесий в газовых смесях. К тому же уравнения состояния газовых смесей известны недостаточно. [c.131]

    Характеризовать какую-либо фракцию законом распределения достаточно просто. Однако при расчете химических процессов, в которых участвует эта фракция, возникает проблема связи параметров распределения с кинетическими и термодинамическими параметрами процесса, а также с соответствующими параметрами продуктов. Поэтому применение закона распределения для расчета химических процессов нефтепереработки пока ограничено процессами гидрокрекинга (см. стр. 154). Для характеристики нефтяной фракции можно пользоваться не только нормальным законом распределения, но и более сложными уравнениями, в которых участвует большее число параметров. [c.95]

    Значение явлений диффузионного перенапряжения для электрохимических процессов. Уравнения, описывающие диффузионное перенапряжение, основаны на предположении о сохранении термодинамического равновесия между электродом и электро-лито.м и на формуле Нернста для обратимого потенциала. Исследование диффузионного перенапряжения не может дать поэтому никаких дополнительных сведений ни с действительном шути протекания электродной реакции, ни о стадиях, составляющих эту реакцию. Вместе с тем применение экспериментальных методов, основанных иа явлениях диффузионного перенапряжения — ртутногО капельного мегода и вращающегося дискового электрода,— позволяет определить многие величины, играющие важную роль в кинетике электродных процессов и в элеюрохимии вообще, а также установить, является ли диффузия единственной лимитирующей стадией. [c.319]

    Полученные сведения о численных значениях равновесных соотношений для различных пластовых нефтегазовых систем при переменных Г и р позволяют изучить возможность применения в практических условиях принципа Ле-Шателье, направленного для выявления характера термодинамического процесса (экзотермического и эндотермического), происходящего в залежи. В связи с этим нами построены температурные зависимости константы равновесия (при р = onst) для всех рассмотренных случаев состояния пластовой жидкости. По кривым видно, что принцип Ле-Шателье в конкретных пластовых условиях для реальных нефтегазовых систем хорошо выдерживается, так как с повышением температуры константа равновесия заметно увеличивается, свидетельствуя об экзотермическом направлении процесса. [c.112]

    Используя методы, примененные в случае реакции Нз -Ь Вгг (см. разд. XIII.3), можно сравнить эти реакции с конкурирующей реакцией 1. Выбирая подходящие термодинамические данные и принимая разумные допущения относительно предэкспоненциальных множителей, можно показать, что роль этих стадий очень мала. Это справедливо даже в случае реакций, таких, как 14, 15 и 16, которые имеют значительно более низкие энергии активации, чем реакция 1. [c.315]

    В повздении некоторых парафинов в присутствии серной кислоты наблюдается положение, несколько напоминающее случай с неопентаном. Изомеризация при помощи серной кислоты подробно обсуждается ниже. Здесь достаточно сказать, что серная кислота особенно в мягких условиях склонна катализировать только такие реакции изомеризации, которые можно рассматривать как внутримолекулярный переход водорода между третичными атомами углерода, исключая вторичные и первичные атомы. Образование продуктов, получающихся при применении в качестве катализаторов хлористого или бромистого алюминия, можно удовлетворительно объяснить внутримолекулярным переходом водорода между третичными и вторичными, но не первичными атомами углерода. Приведем пример. В присутствии серной кислоты легко устанавливается равновесие между 2- и 3-метилпентанами, причем 2,2-диметилбутан отсутствует, хотя термодинамически он является более выгодным изомером и преобладает, когда равновесие устанавливается на хлористом алюминии как катализаторе. [c.26]

    Креме того, для реакций простейших олефинов с ароматическими углеводсродами известны термодинамические и кинетические данные, некоторые из них пашли применение в довольно большом масштабе в периодическом процессе благодаря этому удалось оценить многие технические проблемы (например, коррозия). [c.489]

    Используемые для расчетон химических равновесий термодинамические соотношения, как легко видеть из приводимых в учебниках термодинамики выводов (см., например, [1, 2, 4]), основаны на применении уравнения состояния идеальных газов к описанию свойств реагирующих газовых смесей. Поэтому понятно, что применимость этих уравнений ограничивается только теми случаями, когда газовые смеси подчиняются уравнению состояния идеальных газов. В применении к реальным системам эти уравнения могут привести 1г некоторым неточностям, величина которых будет тем больше, чем больше отличаются свойства реагирующих веществ от свойств идеальных газов. [c.156]

    Как уже было подчеркнуто выше, для вычисления по методу Эрдоса и Черни значений какой-либо термодинамической функции в широком интервале температур необходимо знать численпое значение искомой функции хотя бы и при одной температуре. Это условие в значительной мере ограничивает рамки и возможности практического применения предложенного Эрдосом и Черни метода расчета. [c.212]

    Способность алюмосиликатных комплексов вызывать ноли меризацию надежно доказана для температур от 150 до 350° i Еще до начала применения каталитического крекинга Гэйер получил полипропилены в присутствии алюмосиликатного катализатора при 340° С и при атмосферном давлении [237]. Бутены могут полимеризоваться при температуре выше 210° С, но при давлении 7 ати эта реакция происходит уже при 175° С [257, 268]. При температурах каталитического крекинга термодинамические факторы являются неблагоприятными для полимеризации полимеры, по-видимому, подвергаются изомеризации и насыщению.. [c.333]

    Химика и инженера, занимающегося вопросами переработки нефти, могут заинтересовать в первую очередь такие термодинамические характеристики реакций, как значение свободной энергии АР° и теплота реакции АИ°, отнесенные к стандартным условиям. Зная численные значения этих величин при определенной температуре, можно рассчитать равновесные концентрации и тепловые эффекты. Настоящий раздел посвящается методам определения численных значений таких характеристик. В последующих разделах будет обс -ждено соотношение между изменением свободной энергии реакции и равновесием и применение этого соотношений к решению практических задач. [c.359]

    Второй метод корреляционного расчета имеет ограниченное применение, поскольку достигаемая точность расчета свободных энергий образования — невелика (1 ккал моль). В табл. УП-1 включены термодинамические характеристики изомеров н-геитана, из которых можно сделать вывод о том, что между характеристиками изомеров не существует большой разницы это обстоятельство подчеркивает важность точного расчета равновесных характеристик. [c.374]

    Практикум содержит работы iio основным paJдeлaм фнничсско химии. В пособии рассмотрены методы физико-химических измерении, обработки экспериментальных данных и способы их расчетг)в. Большое внимание уделено строению вещесто, первому началу термодинамики, фазовому равновесию 13 одно-, двух- и многокомпонентных системах, химическому равновесию в гомогенных системах и др. Интерес представляют работы по молекулярной спектроскопии и кинетике гомогенных и гетерогенных [)еакций. Изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. Введены работы по расчету сумм состояния и термодинамических функций. [c.2]

    Третье издание практикума существенно отличается от первых двух изданий. Получили значительное развитие работы по молекулярной спектроскопии, а работы по атомным спектрам сокращены — в связи с изменениями учебных планов. В практикум введены новые работы, знакомящие со спектральными методами изучения свойств молекул и определения молекулярных констант веществ, работы по расчету сумм состояния и термодинамических функций на основе непосредственно полученных опыть ых данных. Студенты знакомятся с применением методов статистической термодинамики для расчета химических равновесий. Существенно изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. [c.4]

    Методы численного моделирования молекулярных систем (численного эксперимента) находят все более широкое применение в практике физико-химических исследований. Возникла целая иерархия методов численного эксперимента, позволяющих воспроизводить на ЭВМ различные свойства моделирующих систем — динамические, термодинамические, структурные (см., например, [357, 358]). Стремительный прогресс вычислительной техники и программного обеспечения ЭВМ позволяет создавать все более совершенные методы моделирования, максимально приближающие свойства моделируемых систем к свойствам систем реальных [359, 360]. Однако даже при помощи самой совершенной вычислительной техники невозможно детально моделировать поведение систем, состоящих более чем из нескольких тысяч взаимодействующих частиц. Наиболее удобными объектами моделирования являются системы, состо ящие из сравнительно небольшого числа молекул. В настоящей работе пойдет речь о моделировании кластеров из молекул воды, причем основное внимание будет уделено структурным характеристикам таких кластеров. [c.132]


Библиография для Термодинамические применение: [c.211]   
Смотреть страницы где упоминается термин Термодинамические применение: [c.88]    [c.143]    [c.247]    [c.99]    [c.326]    [c.15]    [c.252]    [c.295]    [c.58]   
Курс физической химии Том 1 Издание 2 (1969) -- [ c.119 ]

Курс физической химии Том 1 Издание 2 (копия) (1970) -- [ c.119 ]




ПОИСК







© 2025 chem21.info Реклама на сайте