Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения фосфора и кремния

    С помош,ью магнийорганических соединений можно получать также альдегиды, кетоны, кислоты. Магнийорганические соединения используются для синтеза элементоорганических соединений фосфора, кремния, ртути, бора, германия, олова. [c.342]

    Химический сосгав твердых горючих веществ очень разнообразен. Большинство из них относится к классу органических веществ, состоящих в основном из углерода, водорода, кислорода и азота. В состав многих органических веществ входят также хлор, фтор, кремний и другие химические элементы.Значительно меньше твердых горючих веществ относится к классу неорганических веществ. Среди них металлы (калий, натрий, магний, алюминий, титан и др.), металлоиды (сера, фосфор, кремний), а также их соединения. [c.186]


    Следует отметить, что, в отличие от галогенопроизводных углеводородов, которые трудно вступают в реакции с магнийорганическими соединениями, алогениды кремния, германия, фосфора и других элементов, как правило, реагируют с магнийорганическими соединениями очень энергично. Исключение в этом отношении составляют только пространственно затрудненные элементорганические галогениды и магнийорганические соединения. Особенно трудно проходит замещение последнего галогена на алифатический или ароматический радикал. Поэтому для завершения реакции приходится нагревать реакционную массу несколько десятков часов или заменять эфир более высококипящим растворителем (дибутиловый эфир, ксилол и др.). Иногда нагревают твердый реакционный комплекс после удаления эфира. [c.217]

    Подобно сере и фосфору кремний не способен образовывать л-связи, поскольку боковое перекрывание орбиталей типа Зр—2р и Зр—Зр неэффективно. Вот почему кремний не образует соединений, подобных алкенам и алкинам. Вместе с тем с элементами, обладающи- [c.336]

    Указанные выше основные классы органических соединений, в свою очередь, подразделяются на более дробные классы. Так, алифатические соединения подразделяются на карбоцепные, если открытые цепи образованы только углеродными атомами, и гетероцепные, если в состав открытых цепей кроме углеродных входят атомы других многовалентных элементов — кислорода, серы, азота, фосфора, кремния. Карбоциклические соединения подразделяются на алициклические, скелетом которых являются замкнутые циклы из разного числа (начиная с трех) углеродных атомов, и ароматические, в основе которых лежит особая циклическая группировка из шести углеродных атомов — так называемое бензольное кольцо. [c.74]

    Фосфор является электронным аналогом амта, одиако наличие во внешнем электронном слое атома свободных rf-орбиталей обусловливает различие свойств соединений фосфора и азота. Это различие аналогично тому, которое наблюдается мри переходе от углерода к кремнию, и связано с образованием донорно-акцепторных Я-связей между атомами фосфора и донорами электронных пар, в частности, кислородом. Поэтому при переходе от N к Р прочность связей Э-Н вследствие увеличения размера атома снижается, а связи Э-0 значительно упрочняются. [c.413]

    К биогенным веществам относятся те соединения, которые возникают в связи с жизнедеятельностью организмов. В их состав входят различные формы азота (аммиачный, нитритный, нитратный), фосфора, кремния, железа. [c.64]


    Металлы семейства железа при нагревании взаимодействуют с кислородом, парами воды, галогенами, серой, фосфором, кремнием, углеродом и бором. Наиболее устойчивыми являются соединения железа (П1), кобальта (И) и никеля (И). [c.208]

    Получение простых веществ из их природных соединений есть всегда окислительно-восстановительный процесс, кроме тех случаев, когда простые вещества встречаются в самородном состоянии. В последнем случае их обычно выделяют из смесей физическими методами (разгонка сжиженного воздуха при получении N2, Оз, благородных газов, процессы флотации и т. п.). Все металлы (кроме самородных) находятся в природе в окисленном состоянии и их выделение из соединений сводится к восстановлению. Неметаллы в природных соединениях могут находиться как в окисленном, так и в восстановленном состоянии. При этом наиболее активные неметаллы (галогены, кислород) находятся в природных соединениях исключительно в восстановленном состоянии. Халькогены находятся преимущественно в восстановленном состоянии, хотя, например, в сульфатах сера окислена. Азот, фосфор, кремний, бор, сурьма, висмут в природе встречаются всегда в окисленной форме (нитраты, фосфаты, силикаты, сульфиды сурьмы и висмута и т. п.). [c.43]

    Таким образом, почва состоит из минеральной и органической (гумуса) частей. Минеральная часть составляет от 90 до 99 % и более от всей массы почвы. В ее состав входят почти все элементы периодической системы Д. И. Менделеева. Однако основными составляющими минеральной части почв являются связанные в соединения кислород, кремний, алюминий и железо. Эти четыре элемента занимают около 93 % массы минеральной части. Гумус является основным источником питательных веществ для растений. Благодаря жизнедеятельности населяющих почву микроорганизмов происходит минерализация органического вещества с освобождением в доступной для растений форме азота, фосфора, серы и других необходимых для растений химических элементов. Органическое вещество оказывает большое влияние на формирование почв и изменение ее свойств. При разложении органических веществ почвы выделяется углекислый газ, который пополняет приземную часть атмосферы и ассимилируется растениями в процессе фотосинтеза. Однако какой-бы богатой питательными веществами ни была почва, рано или поздно она начинает истощаться. Поэтому для поддержания плодородия в нее необходимо вносить питательные вещества (удобрения) органического или минерального происхождения. Кроме того, что удобрения поставляют растениям питательные вещества, они улучшают физические, физико-механические, химические и биологические свойства почв. Органические удобрения в значительной степени улучшают водно-воздушные и тепловые свойства почв. Способность почвы поглощать пары воды и газообразные вещества из внешней среды является важной характеристикой. Благодаря ей почва задерживает влагу, а также аммиак, образую- [c.115]

    Путем рассмотрения электронных структур опишите валентные состояния этих атомов в их соединениях с кремнием, фосфором и серой. [c.233]

    Помимо сернистых соединений отравляющее действие на железохромовый катализатор оказывают соединения фосфора, бора, кремния, хлора [14]. Механические примеси, присутствующие в газе и паре, также снижают активность катализатора, забивая его поверхность, и уменьшают механическую прочность в результате эрозии. Снижение механической прочности происходит и при обратимом отравлении, и в результате фазовых превращений. [c.370]

    Хлор является весьма активным реагентом. При высоких температурах он способен вытеснять серу из сульфидов, а в присутствии восстановителей хлорировать окислы различных металлов и вытеснять из сульфатов, фосфатов, силикатов кислородные соединения серы, фосфора, кремния с образованием соответствующих хлоридов. Это используют в технологии благородных и цветных металлов при рафинировке золота, алюминия, свинца и олова а также в металлургии титана и редких металлов — циркония, тантала, ниобия и др.При хлорировании полиметаллических руд образующиеся хлориды могут быть разделены на основе различия в температурах испарения, а также методами экстракции [c.731]

    Методам синтеза различных литийорганических соединений, их идентификации, хранению, транспортировке, реакционной способности и посвящена эта книга. На примере наиболее типичных представителей литийорганических соединений описаны различные методы синтеза (приведены подробные методики), а затем также на самых характерных примерах с приведением условий рассмотрены реакции присоединения литийорганических соединений к кратным связям углерод - углерод, углерод - азот, углерод - кислород, углерод - сера, реакции замеш,ения под действием литийорганических соединений, их реакции с донорами протонов (спиртами, тиолами, аминами). Показано использование литийорганических соединений для построения связи углерод - азот, углерод - кислород, углерод - сера, углерод - галоген, а также получение с их по-мош,ью самых разнообразных элементоорганических (соединений бора, фосфора, кремния и др.) и металлоорганических соединений, в том числе органических производных переходных металлов. Описаны также другие типы реакций литийорганических соединений, в частности, различные виды элиминирования. Книга снабжена большим табличным материалом и хорошо подобранными ссылками. [c.5]


    Расположение материала в руководстве сделано по классическому принципу, а общие и теоретические вопросы вмонтированы в систематическое изложение фактического материала и логически привязаны к соответствующему разделу. Английское издание состоит из шести томов общим объемом около 700 листов. Том 1 посвящен рассмотрению общих теоретических вопросов, стереохимии, а также конкретным большим классам соединений — углеводородам, галогенпроизводным и кислородсодержащим соединений. В томе 2 рассмотрены азотсодержащие соединения, карбоновые кислоты и соединения фосфора, в томе 3 — соединения серы, селена, теллура, кремния, бора и металлорганические соединения. Тома 4 и 5 посвящены химии природных соединений и биохимии, и здесь изложение в большей степени отражает вкусы авторов. Этот материал представляет большую ценность, поскольку демонстрирует неотделимость от органической химии ее разделов, непосредственно соприкасающихся с биологией. Том 6 целиком состоит из указателей (авторский, формульный, предметный, указатели реакций и реагентов), [c.11]

    Чаще всего в качестве добавок используют хлорсодержащие соединения. Реже рекомендуются соединения брома, серы, фосфора, селена и теллура. Предлагается применять также органические перекиси, озон, перекись водорода, гелий и соединения, содержащие кремний. [c.215]

    К обширному классу эле.менторгаиических соединений относятся многочисленные соединения фосфора, кремния, бора, а также металлов — металлоорганические соединения. Следует подчеркнуть, что к последнему классу относятся только такие соединения, в которых атомы металлов непосредственно связаны с атомами углерода. Алкоксиды и ароксиды (алкоголяты, гликоляты, глнцераты, феноляты) металлов, соли органических кислот, сложные эфиры металлсодержащих кислот и т. п. не относятся к металлоорганическим соединениям. [c.143]

    Реакция не ограничивается соединениями фосфора, кремния и бора например, тетрамерный (Ы8Е )4 образуется из гидрохлорида этиламина и двухлористой серы [49]. Реакция не ограничивается также соединениями азота при отрыве атома водорода от диметил-фосфиноборинового комплекса образуются очень устойчивые циклические фосфиноборины [17]. [c.221]

    Среди исследованных соединений фосфора, бора, брома, хлора, кремния, хрома, кобальта, бария, цинка и других наиболее эффективными для бензинов оказались фосфорсодержащие вещества [176]. Эффективность действия фосфорсодержащих присадок проявляется не в уменьшении количества нагара, а в изменении его состава и свойств, способствующем устранению неполадок в работе двигателя. Например, нагары, содержащие вместо оксидов свинца его фосфаты, имеют более высокую температуру затлевания, °С  [c.175]

    Анализ этих материалов выполняют из отдельных навесок. В зависимости от вида металла определяют различные компоненты. Так, в чугунах и углеродистых сталях обязательно определяют содержание углерода методом сожжения пробы в токе кислорода при 1400 °С с последующим измерением объема образовавшегося СО2. Соединения серы определяют сожжением пробы в токе кислорода при 1400 °С и последующим титрованием образовавшейся сернистой кислоты раствором иода. Марганец определяют персульфат-серебряным методом, а кремний — гравиметрическим или фотоколориметрическим методом. Соединения фосфора определяют фотоколориметрическим методом по синей окраске фосформолибденового комплекса. [c.204]

    Гетерополикислоты. Хорошо известно образование фосфорномолибденовой кислоты Hз[P(MOзOl )J на образовании этого окрашенного в желтый цвет соединения основаны различные методы определения малых количеств фосфора в металлах, горных породах и т. д. Подобные же соединения образуют кремний и мышьяк. При обработке гетерополикислот названных элементов подходящими восстановителями образуются продукты восстановления (церулеокислоты), окрашенные в интенсивно синий цвет. Это позволяет еще больше повысить чувствительность методов определения. [c.213]

    Вторая часть пособия включает описание особенностей структуры, физических и химических свойств функциональных производных тлеводородов различных классов, содержащих кислород, азот, серу, фосфор, кремний, металлы. Рассиатривается характер строения и свойства гeтqзoцикличe киx соедашений, включающих атомы кислорода, серы и азота. Особый класс представляют полифункциональные соединения, содержащие несколько различных функциональных гругат. Приведены также принципиальные особенности строения, методов получения и свойств основных классов биохимических веществ - полисахаридов, полипептидов и белков. [c.13]

    Второй основной подраздел каждой главы посвящен описанию реакций, принадлежащих к категории, указанной в названии главы. В одной книге невозможно рассмотреть все или почти все известные реакции. Однако здесь предпринята попытка затронуть важнейшие реакции стандартной органической химии, которые можно использовать для получения относительно чистых соединений с приемлемыми выходами. Для объективности представленной картины и для того, чтобы не упустить реакции, традиционно обсуждаемые в учебниках, в книгу включены также реакции, не удовлетворяющие перечисленным требованиям. О широте охвата материала можно судить по тому факту, что более 90 % индивидуальных методик, приводимых в Organi Syntheses , нашли отражение в этой книге. Однако некоторые специальные области обсуждаются лишь поверхностно или вообще не рассматриваются. К их числу относятся электрохимические реакции и реакции полимеризации, способы получения и свойства гетероциклических соединений, углеводов, стероидов и соединений, содержащих фосфор, кремний, мышьяк, бор и ртуть. Основные принципы, на которых основаны эти разделы химии, конечно же, не отличаются от принципов, лежащих в основе более подробно разобранных разделов. Несмотря на эти упущения, в книге рассмотрено около 590 реакций. [c.6]

    Фридрих Велер (1800—1882) —немецкий химик, с 1831 г. профессор Технической школы в Касселе, с 1836 г. до конца жизни профессор Геттингенского университета. Открыл циановую кислоту, оказавшуюся тождественной но составу гремучей кислоте. Получил мочевину иа неорганического соединения (цианата аммония). Исследовал совместно с Либихолг мочевую кислоту и ее производные. Впервые получил алюминий нагреванием хлорида алюминия с калием. Аналогичным способом получил бериллий и иттрий. Открыл метод получения фосфора, кремния в свободном состоянии и ого соединений. Осуществил получение карбида кальц1гя и ацетилена. Автор учебных руководств по органической и неорганический химии. Избран членом-корресаондентом Петербургской Академи наук (1853). [c.157]

    В-третьих, в химии фосфора ярче проявляется склонность к об-)азованию полимерных структур. В противовес простой молекуле Ма, в химии гомоатомных соединений фосфора (различных модификаций простых веществ) заметна тенденция к образованию твердых полимеров. В химии фосфора хорошо известны как гомо-, так и ге-тероцепные полимеры. В этом отношении необходимо констатировать горизонтальную аналогию в ряду 51—Р—8. 1 тому же фосфор обладает максимальным химическим сродством к кислороду и фтору, как кремний и сера. [c.269]

    Высо <ая НЛП низкая степень окисления элемента не всегда является показателем его высокой окислительной ИЛИ восстановительной активности. Так, НРОя, SiOj, соединения Мо п W в противоположность аналогичным по составу HNO ,, PbOj, соединениям хрома (VI) окислительных свойств не проявляют, что связано с большой устойчивостью максимальной степени окисления для фосфора, кремния, молибдена и вольфрама. [c.246]

    Следует отметить, что, в отличие от галогенопроизводных углеводородов, которые трудно вступают в реакции с магнийорганическими соединениями, галогениды кремния, германия, фосфора и других элементов, как правило, реагируют с магнийорганическими соединениями очень энергично Исключение в этом отношении составляют только пространственно затрудненные элементорганические галогеии-ды и магнийорганические соединения. Особенно трудно проходит [c.202]

    Фенолы и полиоксипроизводные, иапример пирокатехин н гидрохинон, пирогаллол, нафтолы, ок азываются для многих реакций окисления хорошими антиокислителями, такими же являются нод, неорганические галоидные солн (преимущественно нодистые и менее бромистые), гидронодиды органических оснований, иоднстые алкилы, нодистые четырехзамещенные аммонии, йодоформ, четырехноди-стый углерод, сера, полуторасернистый фосфор Р Зз, неорганические сульфиды, амины, нитрилы, амиды, карбамиды, уретаны, некоторые красители, неорганические соединения фосфора, мышьяк, сурьма, висмут, ванадий, бор, кремний, олово, свв-нец. В качестве самоокисляющихся веществ были иснытаны ненасыщенные углеводороды, сложные органические соединения (каучук, жиры), сульфит натрня, различные классы альдегидов и т. п. [c.475]


Смотреть страницы где упоминается термин Соединения фосфора и кремния: [c.45]    [c.42]    [c.50]    [c.251]    [c.257]    [c.88]    [c.203]    [c.291]    [c.13]    [c.133]    [c.73]    [c.271]    [c.11]    [c.559]   
Смотреть главы в:

Правила симметрии в химических реакциях -> Соединения фосфора и кремния




ПОИСК





Смотрите так же термины и статьи:

Фосфорила соединения



© 2025 chem21.info Реклама на сайте