Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты Сц и более, эфиры

    Кислоты, сложные эфиры, кетоны и альдегиды образуются обычно в чрезвычайно малых количествах. Более высоким бывает содержание только метилформиата, получающегося по реакции [c.215]

    Другой промышленный способ получения этиленгликоля заключается в действии окиси углерода на формальдегид. В результате конденсации образуется гликолевая кислота, метиловый эфир которой восстанавливают в паровой фазе в этиленгликоль (гл. 16, стр. 296). В 1954 г. в США 83% этиленгликоля было получено из окиси этилена, а 17% — из формальдегида и СО [1]. Последний способ нельзя использовать для производства окиси этилена хотя теоретически этиленгликоль и может превратиться при повышенной температуре и низком давлении в окись этилена, на практике основными продуктами реакции, проведенной при этих условиях, являются ацетальдегид или диоксан, более устойчивые, чем окись этилена. [c.354]


    Полиакрилаты—продукты полимеризации акриловой или мет-акриловой кислот, их эфиров, галогенпроизводных, нитрилов и т. д. [50]. Способность акриловой кислоты полимеризоваться была установлена еще в 1843 г. Однако систематические исследования полимерных эфиров акриловой кислоты были осуществлены значительно позже. Полученные прозрачные полимеры стали известны под названием акрилоидов. Акриловая кислота при этерификации различными спиртами дает разнообразные сложные эфиры, которые могут быть затем полимеризованы. Следует отметить, что с повышением молекулярного веса спиртового радикала полимеры акриловых эфиров становятся все более мягкими и эластичными. [c.617]

    Ароматические кислоты более сильные, чем жирные с тем же числом углеродных атомов. Для них характерны все реакции, свойственные кислотам жирного ряда образование солей, ангидридов, галоидангидридов, сложных эфиров, амидов и др. [c.292]

    Восстановление аф -непредельных кетонов металлом в жидком аммиаке (содержащем обычно эфир как сорастворитель) приводит к образованию енолятов металла. Последние обычно стабильны в жидком аммиаке, но под действием мягкого донора протона (например хлорида аммония рКа аммоний-катиона равен 9,3) могут быть превращены в соответствующие насыщенные кетоны. Они и являются конечными продуктами восстановления. Если в реакционной среде присутствует избыток металла и в качестве донора протона используется кислота более сильная, чем насыщенный кетон (например этанол), то конечным продуктом восстановления оказывается насыщенный спирт  [c.181]

    Типичные примеры реакции Дильса—Альдера описаны ниже. Легко заметить, что в результате реакции всегда образуется новая двойная связь. При синтезе углеводородов в диенофиле отсутствует электроноакцепторная группа. Однако в более общих случаях, т. е. при образовании аддуктов ангидридов, карбоновых кислот, сложных эфиров, альдегидов, хинонов и т. п., в диенофиле имеется электроноакцепторная группа. [c.144]

    Применение электрохимического метода фторирования к углеводородам имеет то нроимущество, что реакция протекает спокойно и ее можно регулировать. Недостатком я] ляется плохой выход. Однако нрименение ] ].ачестве исходных веществ кислот, спиртов, эфиров пли аминов едет к образованию фторпарафинов с более высокими выходами в результате деструкции реагирующей молекулы и потери функциональной группы. П01шшеиие эффективности процесса ] этом случае, возможно, обусловлено го])аздо большей их растворимостью во фтористом водороде по сравнению с углеводородом, 1 результа те чего )1о.чр . Стает проводимость реакционной смеси. [c.73]


    Производство натрийалкилсульфатов из спиртов, полученных прямым окислением жидких парафинов в присутствии борной кислоты, по сравнению с другими процессами имеет наименее благоприятные показатели. В- числе основных причин, повлиявших на величину технико-экономических показателей процесса, в первую очередь следует указать низкую глубину сульфирования вторичных спиртов. Это обстоятельство обусловливает необходимость отыскания более целесообразных направлений использования вторичных спиртов (динатриевая соль моноалкилсульфоянтарной кислоты, полиоксиэтиленовые эфиры, амийы, присадки к топливам и маслам и др.). [c.189]

    Разрыв связи С—С при окислении может происходить в любой точке молекулы, поэтому в оксидате содержатся продукты самого различного молекулярного веса. В оксидате были обнаружены и идентифицированы следующие летучие жирные кислоты муравьиная, уксусная, пропионовая, масляная,валерьяновая, капроновая и далее вплоть до 10 углеродных атомов в цепи. Водонерастворимые нелетучие кислоты представляют собой очень сложную < месь. Помимо жирных кислот, оксидат может содержать окси-кпслоты, лактоны, ангидриды, альдегидо-кислоты, кетоно-кислоты, альдегиды, спирты и простые эфиры [328—336]. Твердые кислоты более чем на 80% состоят из предельных соединений с молекулярным весом от 145 до 300 и на 50% — из соединений с числом углеродных атомов не выше 14 [339]. Сообщалось об идентификации миристиновой, пальмитиновой, стеариновой, арахиновой, лигно-цериновой и изоиальмитиновой кислот [340]. Образование двухосновных кислот незначительно, хотя янтарную кислоту удалось выделить из оксидата [341, 342]. Неокисленный остаток по впеш- [c.587]

    Продукты реакции представляют собою смеси жирных кислот (от муравьиной — до кислоты с более чем 25 атомами углеводородов), окси- и кете кислот, слсжных эфиров, лактонов и неомыляемых веществ (нбс КЕСленнсго парафина, спиртов и кетонов). [c.155]

    Гере (475) исследовал более 100 органических жидкостей, стре- мясь найти такую, которая хорошо растворяла бы ароматические углеводороды и не растворяла бы вовсе жирные. Хуже всего жирные углеводороды растворяются в пировиноградной кислоте. Этиловый эфир винной кислоты действует вроде диметилсульфата, ацетоуксус-ный эфир но свойствам близок к анилину, а этиловый эфир ш,аве-левой кислоты напоминает в отношении избирательной растворимости уксусный ангидрид. Наиболее удобными растворителями оказались левулиновая кислота, фенилгидразин, неполный уксусный эфир этиленгликоля и фурфурол. Левулиновая кислота берется в кол1гчестве 3—4 объемов по отношению к бензину и удобна тем, что легко растворяется в воде, что делает возможным с одной стороны выделение извлеченных углеводородов, с другой — регенерацию ее. [c.170]

    Анализ научных публикаций последних лет показал, что основное направление работ в области синтетических масел для турбореактивных самолетов — синтез и применение смешанных или комплексных эфиров и диэфиров. Комплексные эфиры диорто-кремниевой кислоты [пат. США 3444081] предложены в качестве основ масел, пригодных для работы в высокотемпературных условиях. Эти эфиры могут содержать радикалы ортокремниевой кислоты, пентаэритрита, двухосновных карбоновых кислот, трехосновных карбоновых кислот, полигликолевого. эфира и некоторые другие. Эфиры этого типа характеризуются значительной молекулярной массой (более 1400), высокой плотностью и вязкостью (126 мм /с при 100°С) и низкой температурой застывания (—50 °С). В качестве высокотемпературных смазочных масел предложен ряд диарилдиалкоксисиланов с алкильными радикалами Сз—С12 [англ. пат. 971598]. [c.165]

    Как следует из табл. 5.11 при добавлении деактиваторов металлов эффективность противоокислительных присадок значительно повышается количество образующегося осадка уменьшается более чем на порядок. В окисленном топливе в присутствии композиций ионол + деактиватор V, ОМИ + деактиватор II и ОМИ + деактиватор III, а также композиций смеси (1 1) ОМИ и ионола с деактиваторами II и типа оснований Шиффа IV—VI полностью отсутствуют кислоты и эфиры. [c.191]

    При окислении углеводородов образуется целый ряд молекулярных продуктов гидропероксиды, спирты, кетоны, альдегиды, карбо ювые кислоты, сложные эфиры и некоторые более сложные полифункциопальные вещества. Промежуточными активными частица ли являются радикалы со свободной валентностью на атоме [c.357]

    В этом случае требуется только каталитическое количество щелочи, в спязи с чем и некоторые другие производные муравьиной кислоты более экономично получать из ее эфиров. Метил- и этилфор-миат синтезируют при 90—110°С и жЗ МПа путем барботирсва-ния оксида углерода через спирт, содержащий 1—2% алкоголята или щелочи. [c.546]

    В настоящее время основным сырьем для производства высших жирных спиртов методом каталитической гидрогенизации служат метиловые и бутиловые эфиры кислот С,— is- Их получают этерификацией соответствующих фракций синтетических жирных кислот (продуктов окисления парафина) или переэтери-фикацией природных жиров (триглицеридов). Сами же природные жиры применяются как сырье для гидрогенизации в относительно небольших масштабах. Переработка свободных жирных кислот, начавшаяся в последние годы, имеет тенденцию к расширению. В табл. 1.8 приведены характеристики и составы кислот, получаемых из различных видов сырья, используемого в промышленных процессах гидрогенизации. Жирные кислоты природных жиров представлены насыщенными и ненасыщенными кислотами с прямой цепью, содержащими четное число углеродных атомов в молекуле. Состав фракций синтетических жирных кислот более сложен. В них присутствуют насыщенные монокарбоновые кислоты с четным и нечетным числом углеродных атомов-как с нормальной, так и с разветвленной цепью, а также дикарбоновые, ненасыщенные и нафтеновые кислоты, кетокислоты и оксикислоты. По другим данным, в промышленных фракциях кислот С]о— ia содержится [в % (масс.)] кислот с разветвленной цепью — 30—35 днкарбоновых кислот— 1,5—4 окснкислот и лактонов— 1—2 неомы-ляемых веществ — до 3. [c.28]


    Большой объем работ, связанных с разработкой двухстадийного алкилирования, был проделан целым рядом нефтеперерабатывающих фирм [3]. В этом процессе существенно уменьшается фракционирующая часть, являющаяся наиболее дорогостоящей секцией установки. Наряду с исследовательскими работами на пилотной установке было проведено несколько испытаний в заводских условиях. Олефин абсорбировали отработанной или рециркулирующей серной кислотой, нереакционноспособные компоненты и парафиновые углеводороды удалялись на стадии абсорбции, а смесь кислоты с олефинами поступала на алкилирование. Удаление инертных примесей способствовало повышению октанового числа алкилата и снижению нагрузки на колонну депропанизации, где получают циркулирующий изобутан. Однако слабым местом процесса являлся более высокий расход кислоты. Еще одним недостатком (или, во всяком случае, усложнением) процесса было то, что когда абсорбцию проводили с очень высокой степенью превращения серной кислоты в эфиры в жидкой фазе, значительное количество нейтральных эфиров (диалкилсульфатов) оказывалось преимущественно в углеводородной фазе, а не в кислотной. Хотя фракционирование и является наиболее дорогостоящей секцией установки, введение в практику системы охлаждения отходящим потоком в 1953 г. [4, 5] и системы изостриппинга в 1956 г. способствовало снижению затрат на фракционирование. Обе эти системы позволили уменьшить колонну деизобутанизации и снизить эксплуатационные затраты на выделение циркулирующего изобутана фракционированием. [c.226]

    Источники эти могут рассматриваться в различных аспектах, например в чисто биологическом, как водоросли, фвто- и зоопланктон, бактерии, липидная часть высших растений и т. д. Возможно также их изучение с точки зрения особенностей валового состава органической массы сапропелевое вещество, гумусовое вещество (для нефтей важна его липидная составляющая) и пр. Возможно также рассмотрение исходных веществ по типу содержащихся в них органических молекул кислот, спиртов, эфиров и пр., могущих служить источниками углеводородов нефтей. Этот аспект и будет главным образом рассматриваться далее. Желающих более подробно ознакомиться с условиями образования, аккумуляции и составом органического вещества мы отсылаем к интересной монографии Тиссо и Вельте [1]. [c.179]

    Способность образовывать комплексы обнаруживают также олефины, диолефины, карбоновые кислоты, сложные эфиры, галоидзамещенпые нормальных парафинов, кетоны, спирты, меркаптаны, амины и др. При этом имеет место одна закономерность легкость образования комплекса и его стабильность увеличиваются с ростом цепи. Неразветвленные моноолефины и диолефины легче образуют комплекс, чем разветвленные. Полиолефины как с разветвленной, так и с неразветвленной ценью, содержащие три и более двойных связи, не образуют комплекса. Это объяс- [c.20]

    И положения защиш аемой поверхности. Например, стеариновая кислота эффективно защиш,ает горизонтальные поверхности и малодейственна в отношении вертикально расположенных стальных поверхностей. Наоборот, эфиры непредельных кислот более активны в отношении вертикально расположенных поверхностей. Это указывает, что для эффективной защиты деталей реальных машин целесообразно применять присадки, состоящие из смеси нескольких компонентой (табл. 131). [c.350]

    Смешанные ангидриды органических и неорганических кислот обычно не выделяют, хотя они часто являются интермедиатами в том случае, если ацилирование проводят с помощью производных органической кислоты при катализе неорганическими кислотами. Серная, хлорная, фосфорная и другие кислоты образуют сходные ангидриды, большинство из которых либо нестабильны, либо их выделение затруднено вследствие того, что положение равновесия смещено в неблагоприятную сторону. Такие интермедиаты образуются из амидов, кислот, сложных эфиров, а также ангидридов. Органические ангидриды фосфорной кислоты более устойчивы, чем ангидриды большинства других кислот так, например, R OOPO(OH)a можно синтезировать в виде соли [605]. Смешанные ангидриды карбоновых и сульфоновых кислот (R OOSO2RO получаются с высокими выходами при обработке сульфоновых кислот ацилгалогенидами или (что хуже) ангидридами [606]. [c.139]

    Большое значение имеют полимеры эфиров акриловой и метакриловой кислот. Из большого числа известных эфиров этих кислот наибольшее техническое применение получили полимеры метиловых эфиров, главным образом метакриловой кислоты, более ограниченное — полимеры соответствуюш,их этиловых, пропиловых и бутиловых эфиров. [c.319]

    См. [2], II, с. 169 [3], с. 886. а) Этилацетат обладает довольно слабой СН-кислотностью, поэтому для отщепления протона и образования аниона требуется сильное основание б) реакцию проводят, применяя большой избыток этилата натрия. Ацетоуксусный эфир представляет СН-кислоту, более сильную, чем этиловый спирт, поэтому он реагирует с этилатом натрия, образуя натрацетоуксусный эфир. Это способствует смещению равновесия в сторону образования ацетоуксусного эфира в) отгонка спирта способствует смещению равновесия в сторону образования ацетоуксусного эфира, такой же эффект оказывает сильное основание NaNH2, которое связывает образующий спирт, превращая его в этилат натрия г) водный раствор едкого натра является слишком слабым основанием и вызывает лишь гидролиз этилацетата. [c.228]

    Больщой теоретический и практический интерес представляет экстракция железа в виде НРеС14 из 6 М раствора хлороводородной кислоты диэтиловым эфиром. Железо можно отделить таким способом от никеля и некоторых других элементов. На примере этого соединения был выяснен механизм экстракции. В отсутствие воды экстракции почти нет, из чего следует, что вода играет какую-то роль в процессе извлечения. Доказан так называемый гидратно-сольватный механизм, по которому в состав экстрагирующегося соединения входят не свободные протоны, а Н3О+ (и более сложные образования), сольватированные молекулами органическо1 о разбавителя — эфира. [c.573]

    Оксидат по окончании процесса окисления поступает в отстойник 2, где избыток борной кислоты частично отстаивается, после чего оксидат фильтруется через нутч-фильтр 3 для окончательного отделения борной кислоты. Профильтрованный оксидат передается после фильтрации в дистилляционный куб 4 для отгонки непрореагировавших углеводородов при сстаточном давлении не более 5 мм рт. ст. и температуре около 250°. Отогнанные углеводороды возвращаются на окисление (после обработки их щелочью для удаления небольших количеств кислот), а эфиры образовавшихся спиртов и борной кислоты остаются в кубе. [c.474]

    Возможно, это обусловлено тем, что алкильные группы, занимающие большое пространство по соседству с карбоксильной группой, мешают образованию промежуточного ком]ялекса, получающегося в результате ионного присоединения. Еще более отчетливо это видно на примерах подавления каталитической этерификации в ряду производных бензойной кислоты, содержащих заместители в обоих орто-положе-ниях. Это явление было открыто и тщательно исследовано В. Мейеролт (1894), но отдельные случаи такого блокирующего действия были отмечены еще раньше Гофманом (1872), наблюдавшим, что некоторые производные диалкиланилинов, замещенные в орто-положениях к функциональной группе, очень стойко выдерживают действие галоидных алкилов. В. Мейер исследовал способность ароматических кислот образовывать эфиры, проводя этерификацию как при кипячении в течение 3—5 ч раствора кислоты в метаноле, содержавшем 3% хлористого водорода (метод Фишера), так и насыщением хлористым водородом раствора кислоты в метаноле на холоду, причем раствор затем оставляли стоять в течение ночи. Он установил, что в случае бензойной кис- [c.364]

    Катализаторы этого рода более активны по отношению к кислородсодержащим группам, чем по отношению к ненасыщенным связя.щ ароматические ядра в их присутствии не восстанавливаются. Альдегиды и кетоны под давлением 100 ати и при температуре 125—15( сюстанавли-ваются до спиртов, без образования побочных продуктов, ч1 о в опреде ленных условиях дает преимущество этим катализаторам перед всеми остальными. Они применяются для восстановления карбоновых кислот, их эфиров и их амидов, в таких случаях другие катализаторы не дают хороших результатов. Восстановление кислот и эфиров ведут под давлением 200—300 ати при температуре 200—250°. Первичнее спирты получаются с хорошими выходами, благодаря чему этот метод может конкурировать с методом Буво и Блана. Амиды при еще более высокой температуре (250—265°) преврашаются в амины, причем необходимо большое количество катализатора (15% от веса амида). [c.531]

    Гидролиз и декарбоксилирование можно также проводить одновременно, нагревая эфир в течение более длительного времени с не слишком разбавленной минеральной кислотой, например с 50%-ной серной кислотой. Этим способом из эфира диметилметиленбисциануксусной кислоты была получена р,р-диметилглутаровая кислота . Эфиры ацилмалоновых кислот, будучи эфирами дикарбоновых -кетокислот, в зависимости от условий реакции могут подвергаться кетонному, кислотному или эфирному расщеплению. [c.617]

    Свободные карбоновые кислоты реагируют труднее, чем их производные, более ннзкне выходы обуслоплсны плохой растворимостью кислот в эфире или образованием нерастворимых соединений с алюминием. Наличие водорода карбоксильной группы вызывает частичное разложение литии ал юминиигидрида  [c.228]

    Для проведения этой реакции применяют самые различные катализаторы. Одним из наиболее общих катализаторов, по-видимому, является уже упоминавшийся пиридин вместе с пиперидином или без него. Однако для конденсации с участием малоновых эфиров, -кетоэфиров и аналогичных соединений подходящим катализатором будет пиридин или какой-нибудь другой вторичный амин. Ацетат аммония, по-видимому, предпочтителен в качестве катализатора для реакций конденсации этилового эфира циануксусной кислоты с пространственно затрудненными кетонами, тогда как для пространственно незатрудненных кетонов следует предпочесть в качестве катализаторов первичные амины, например бензиламин [491. Действительно, в некоторых случаях присутствие в пиперидине следов бензиламина существенно увеличивает выход сложного эфира [49]. Катализатор Коупа — ацетат аммония или какого-нибудь амина в инертном растворителе, таком, как бензол, толуол или хлороформ, вместе с меньшим, чем ацетат, количеством уксусной кислоты является существенным компонентом реакций конденсации с участием циануксусных эфиров [50]. Этот катализатор с успехом применялся с другими сложными эфирами, например малоновыми или ацето-уксусными эфирами. Оказалось, что для конденсации ацетоуксусного эфира пиперидин — более подходящий катализатор, чем ацетат пиперидина или ацетамид и уксусная кислота [51]. Такие аминокислоты, как -аланин и е-аминокапроновая кислота, в присутствии уксусной кислоты более эффективны, чем пиперидинацетат, для реакции конденсации ацетона с этиловым эфиром циануксусной кислоты [521. Оказалось, что небольшое количество бензойной кис- [c.329]


Смотреть страницы где упоминается термин Кислоты Сц и более, эфиры: [c.444]    [c.174]    [c.85]    [c.41]    [c.56]    [c.204]    [c.352]    [c.242]    [c.118]    [c.363]    [c.44]    [c.118]    [c.327]    [c.390]    [c.861]    [c.157]    [c.257]    [c.322]    [c.261]    [c.179]    [c.98]   
Пластификаторы (1964) -- [ c.642 ]




ПОИСК





Смотрите так же термины и статьи:

Болов



© 2025 chem21.info Реклама на сайте