Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элонгация, определение

    Количество определенного фермента в клетке может регулироваться на нескольких уровнях на этапе транскрипции, трансляции, а также в процессе сборки и разрушения ферментного белка (см. рис. 28). В иерархии регуляторных воздействий наиболее сложный механизм, контролирующий количество ферментов в клетке, связан с процессом транскрипции. Специфические химические сигналы могут инициировать или блокировать транскрипцию определенного участка ДНК в иРНК. В случае индукции образованная иРНК участвует в определенной последовательности реакций, называемой трансляцией и заканчивающейся синтезом полипеп-тидных цепей. Регуляция белкового синтеза на уровне трансляции может осуществляться на любом из ее этапов, например на этапе инициации, элонгации и др. Не исключена также возможность изменения времени жизни иРНК под воздействием разных эффекторов, в том числе конечных продуктов метаболических путей. Хотя механизмы регуляции синтеза белка на уровне трансляции еще точно не установлены, ясно, что на этом этапе имеются широкие возможности для регуляции скорости синтеза различных белков. [c.117]


    Возможно существование каких-то регуляторных белков или малых рибонуклеопротеидов, которые взаимодействуют с транслирующей рибосомой и избирательно останавливают или затрудняют элонгацию в определенных местах. Известен пример таких специфичных репрессоров элонгации в эукариотах это рибонуклеопротеид-ная частица, содержащая 7S РНК частица узнает особую N-концевую гидрофобную последовательность образующегося полипептида на транслирующей рибосоме, присоединяется к рибосомам и останавливает элонгацию до тех пор, пока рибосома не вступит во взаимодействие с мембраной эндоплазматического ретикулума (см. В.IX.2). Не исключено, что подобные механизмы используются для регуляции скорости элонгации на других стадиях синтеза белка, например, на определенных стадиях сворачивания белка или сборки белка на транслирующей рибосоме. [c.213]

    Язык жизни — генетический код—основан на использовании алфавита, состоящего всего из четырех букв А, О, Т и С. Эти буквы соответствуют нуклеотидам, найденным в ДНК. Они входят в состав трехбуквенных кодовых слов, называемых кодонами. Общий набор таких кодонов составляет генетический код. Последовательность серии кодонов, расположенных в цепи ДНК образует определенный ген, по которому как по матрице синтезируется молекула РНК. Большинство молекул РНК участвует в том или ином этапе синтеза белков. Синтез белка состоит из трех основных этапов инициации, элонгации и терминации. Этот процесс во многом напоминает репликацию и транскрипцию ДНК и так же протекает в направлении 5 -+ 3.  [c.94]

    Возможно, аналогичная регуляция степени компартментализации на полирибосомах существует также в случае другого фактора элонгации, EF-1. Л. П. Овчинниковым с сотр. было обнаружено, что поли-рибосомная фракция эукариотической клетки содержит латентную фосфокиназу, которая в определенных условиях может активироваться и специфически фосфорилирует а-субъединицу EF-1 в результате EF-1 утрачивает свое неспецифическое сродство к высокомолекулярным РНК и покидает полирибосомы. Нельзя исключить того, что фосфорилирование EF-la может оказывать влияние на скорость элонгации и служить для регуляции трансляционного процесса в клетке. [c.220]

    Итак, регуляция транскрипции у эукариот -это очень сложный процесс. Структурный ген может иметь множество регуляторных элементов, которые активируются специфическими сигналами в клетках разного типа в разное время клеточного цикла. Однако некоторые структурные гены находятся под контролем уникального фактора транскрипции. Специфические белки могут взаимодействовать с определенными регуляторными элементами и блокировать транскрипцию или связываться со всем транскрипционным комплексом еще до инициации транскрипции или во время элонгации. [c.47]


    При истинном значении равновесия таким образом определенном, элонгации получают по формуле [c.596]

    Вывод декремента из эмпирического выражения ряда отклонений (стр. 406). 5. Определение среднего декремента из суммы многих наблюденных элонгаций [c.89]

    Наличие цикличности во временном объединении сигма-фактора с минимальным ферментом решает дилемму, стоящую перед РНК-полимеразой привести в соответствие взаимодействие фермента с матрицей при инициации и элонгации. Это в самом деле дилемма, поскольку для инициации требуется прочное взаимодействие только с определенными последовательностями (промоторами), тогда как при элонгации необходимо прочное связывание со всеми последовательностями, вдоль которых происходит движение фермента. Минимальному ферменту присуще высокое сродство к ДНК, которое увеличивается в присутствии новосинтезированной РНК. Однако его сродство к слабым участкам связывания слишком велико, чтобы позволить ферменту эффективно находить промоторы. При этом поиск участков прочного связывания методом проб и ошибок путем ассоциации и диссоциации может длиться много часов. Сигма-фактор значительно ускоряет этот процесс, уменьшая стабильность слабых комплексов. В то же время, стабилизируя ассоциацию в участках прочного связывания, сигма-фактор необратимо сдвигает реакцию в сторону образования открытых комплексов. Но затем действия голофермента парализуются его же собственным специфическим сродством к промоторам. Поэтому, освобождаясь от сигма-фактора, фермент снова способен связываться с любой последовательностью ДНК, что позволяет ему продолжать транскрипцию. [c.135]

    Сразу же, как только стало ясно, что функции РНК-полимеразы подразделяются между минимальным ферментом, ответственным за элонгацию синтезирующейся РНК, и сигма-фактором (а-фактором), участвующим в выборе промотора, возник вопрос о возможности существования нескольких типов сигма-факторов, специфичных для разных классов промоторов. Как правило, такой механизм сам по себе, по-видимому, не используется для контроля транскрипции у бактерий. Но при определенных обстоятельствах в жизненном цикле бактериальной клетки происходят коренные изменения. При этом наблюдается выключение транскрипции ранее экспрессируемых генов и включение новых транскрипционных единиц. В этих случаях, возможно, происходит введение долговременных изменений непосредственно в РНК-полимеразу. [c.157]

    Процесс синтеза РНК, изображенный на рис. 39.3, включает связывание РНК-полимеразного комплекса с ДНК-матрицей в промоторной области. Вслед за этапом инициации синтеза РНК высвобождается ст-фактор и происходит элонгация синтеза РНК в направлении 5 - 3 антипараллельно матричной цепи ДНК. Фермент полимеризует рибонуклеотиды в определенной последовательности, отражающей структуру кодирующей цепи в соответствии с принципом комплементарности. В ходе реакции высвобождается пирофосфат. И в прокариотических, и в эукариотических организмах полимеризация РНК начинается обычно с пуринового рибонуклеотида. [c.83]

    Следует заметить что зависимость элонгационного процесса от прохоадения модулирупцих кодонов можно учитывать в определении константы элонгации уменьшая ее для трансляции редких кодонов. [c.160]

    Использованию ферментов в качестве катализаторов для реакции соединения пептидов и в настоящее время уделяется большое внимание. Катализ образовании пептидов при биосинтезе белка осуществляет фермент перти-дилтрансфераза. Так как этот фермент взаимодействует с протеиногенными аминокислотами независимо от природы боковой цепи, теоретически он представляет собой идеальный катализатор для реакций целенаправленного синтеза пептидов. Пептидилтрансфераза в сложной рибосомной системе структурно тесно связана со всеми другими составляющими, кроме того, на стадии элонгации во время биосинтеза белка одновременно действуют также другие факторы. Поэтому вероятность того, что выделенный из естественной среды фермент вообще будет способен к катализу реакции синтеза пептидов, очень мала. Никакого выхода в практику пептидного синтеза не получил также изученный Липманном механизм биосинтеза пептидных антибиотиков, который проходит с участием определенных ферментов. [c.166]

    Было установлено, что при определенных условиях в бесклеточных системах транслокация может происходить также и в отсутствие факторов элонгации и ГТФ. Эта неэнзиматтеская транслокация идет гораздо медленнее, чем EF-G ОТР-катализируемая, но, тем не менее, дает в результате нормальное посттранслокационное состояние рибосомы, которое способно продолжать элонгацию. Следовательно, процесс транслокации является термодинамически спонтанным. Транслокационный механизм оказывается принципиально присущ самой рибосоме, а не привносится фактором элонгации. [c.203]

    В биосинтезе РНК на матрице ДНК можно выделить несколько стадий, которые в целом составляют цикл транскрипции. Они подробно изучены у прокариот. Первая стадия транскрипции — инициация включает взаимодействие VYiK-полимеразы с матрицей ДНК. РНК-полимераза может связываться с любым участком ДНК, при этом образуется неспецифический лабильный межмолекулярный комплекс. В результате серии актов ассоциации—диссоциации, т. е. последовательного образования и распада межмолекулярных комплексов РНК-полимеразы со случайными фрагментами в полинуклеотидной последовательности ДНК, образуется промоторный участок, имеющий последовательность нуклеотидов, узнаваемых РНК-полимеразой. В области промоторного участка сначала образуется закрытый стабильный комплекс ДНК с РНК-полимеразой. Затем происходит локальная денатурация ДНК, в результате чего РНК-полимераза получает прямой доступ к азотистым основаниям ДНК. Наращивание молекулы РНК (элонгация) происходит в результате перемещения РНК-полимеразы вдоль ДНК путем присоединения очередного рибонуклеотида, комплементарного тому дезоксирибонуклеотиду ДНК, который в данный момент находится в области активного центра РНК-полимеразы. Рибонуклеотиды присоединяются к З -ОН-концу последовательно, один за другим, в соответствии с матрицей ДНК. Скорость элонгации в клетках Е. oli при 37 °С составляет 45 — 50 нуклеотидов в 1 с. Тер-минацию синтеза РНК вызывает определенная последовательность нуклеотидов в ДНК — терминатор, или стоп-сигнал. Как только синтез [c.354]


    РНК-полимераза Е. oli изучена наиболее подробно. Это олигомерный фермент, состоящий из двух одинаковых а-субъединиц (мол. масса 36000), двух разных ( j и Р,)-субъединиц (мол. масса соответственно 151000 и 155000), (D-субъединицы (мол. масса 11000) и а-субъединицы общая мол. масса фермента около 390000. Считают, что функция а-субъединицы (а-фактор)—узнавание определенного участка на матрице ДНК, названного промотором, к которому присоединяется РНК-полимераза. В результате образуется так называемый открытый комплекс фермента с ДНК двухцепочечная структура ДНК раскрывается ( плавится ). Далее на одной из нитей ДНК, как на матрице, синтезируется мРНК синтез заканчивается в определенной точке в конце гена или прерывается под действием особых белков. Другим субъединицам фермента приписывают функцию инициации биосинтеза РНК (а-субъединицам) и основную каталитическую функцию (связывание субстратов и элонгация синтеза) — -субъединицам. Кроме того, открыт ряд белков, принимающих участие в механизме синтеза РНК в клетке. В частности, исследуется природа репрессорных белков и белка-терминатора (р-фактора). Последний обладает способностью обратимо связываться с терминирующими участками ДНК (так называемые стоп-сигналы транскрипции), выключая действие РНК-иолимеразы. При отсутствии этого белка образуются исключительно длинные цепи РНК. [c.489]

    При нормальном развитии процесса на каждый акт инициа1 ии и терминации биосинтеза приходится большое число актов элонгации, т. е. соединения очередного мономера с растущей цепью. Каждый акт элонгации проходит в активном центре соответствующей полимеразы нуклеиновых кислот или рибосомы, причем его непосредственными участниками являются концевая группа синтезируемого полимера, кодирующий элемент матрицы и очередная молекула мономера. Все эти участники должны быть закреплены определенным образом в активном центре полимеразы или рибосомы. Вытекающая из этих соображений схема активного центра матричного фермента представлена на рис. 48. По аналогии с активными центрами других, более просто устроенных ферментов можно ожидать, что такой активный цент]р должен быть уникальным. [c.175]

    Этот прием был использован при определении структуры фактора элонгации биосинтеза белка EF—С (Ю. Б. Алахов и др., 1976). Инкубирование EF—С (М 81 ООО) в нативном состоянии с трипсином приводит к образованию четырех сравнительно устойчивых к дальнейшему действию трипсина фрагментов T4,Ts,Ti, и Т (М 41 ООО, 27 000, 8000 и 30U0 соответственно). Фрагменты были выделены в гомогенном виде, установлено их строение и расположение а полипептидной цепи белка (рис. 32). [c.79]

    Так же как у прокариот, репликация состоит из трех основных стадий инициации, элонгации и терминации. Реп.1икация эукариотической ДНК происходит одновременно во многих областях хромосомы и, по-вндимому. инициируется на определенных последовательностях ДНК, которые хорошо идентифицированы у ряда вирусов. Инициация, как и у прокариот, требует участия специфических белков. [c.411]

    Как и репликация, транскрипция состоит из трех основных этапов инициации, элонгации и термииации. В отличие от ДНК-полимераз, РНК-полимеразы способны к самостоятельной инициации синтеза РНК, которая осуществляется в определенных точках ДНК. Место инициации сиитеза РНК определяется специальными регуляторными участками ДНК—промоторами. Тсрмииация синтеза также происходит на специфических участках ДНК —терминаторах. Процесс транскрипции регулируется разнообразными способами, что позволяет клетке приспосабливаться к изменениям условий существования. Наиболее хорошо изучены транскрипция и способы ее регуляции у бактерий и бактериофагов. [c.412]

    Н. R. Lillie [267], 35, 1952, 149-155 о теории метода элонгации, измененной для случая определения удлинения при горизонтальном положении оси стержня, см. Gronlund [311], 35, 1951, 320—331. [c.104]

    О преимуществе метода элонгации по сравнению с определениями точки размягчения по кривым термического расширения см. Littleton [311], 24, 1940, 176— 185 краткое содержание см. [227], 19, 1941, 259. [c.106]

    Ранние исследования Корнберга и его коллег открыли путь к прямому изучению репликации ДНК, однако и по сей день у нас нет полной и детальной картины процесса репликации, даже в случае вирусной ДНК, образующей всего лишь одну небольщую хромосому. Сегодня благодаря усилиям Корнберга и многих других исследователей мы знаем, что для репликации необходима не только ДНК-полимераза. В этом процессе, по-видимому, участвуют больше двадцати различных ферментов и белков, каждый из которых выполняет определенную функцию, Репликация состоит из большого числа последовательных этапов, которые включают узнавание точки начала репликации, расплетание родительского дуплекса, удержание его цепей на достаточном расстоянии друг от друга, инициацию синтеза новых дочерних цепей, их элонгацию, закручивание цепей в спираль и, наконец, терминацию репликации. Все эти этапы процесса репликации протекают с очень высокой скоростью и исключительной точностью. Весь комплекс, состояший более чем из двадцати репликативных ферментов и факторов, называют ДНК-репликазной системой, или реплисомой. Рассмотрим в общих чертах основные этапы процесса репли- [c.902]

    Поскольку гири имеют определенный уровень дискретности, то сравнение их веса свесом груза не может обеспечить высокой точности измерения. Если бы взвешивания ограничивались гирями, то о точности — в сотых п тысячных, даже в десятых долях миллиграмхма нельзя было бы строго говорить, так как гири такого веса невозмол<ио прочно готовить и применять без риска больших погрешностей в весе, им отвечающих. В точных взвешиваниях роль мельчайших гирь заменяется отсчетами (по шкале) элонгаций колеблющегося коромысла [6]. [c.8]

    Первоначально рибосомы выделяли в виде нескольких различных структур их описывали по-разному-как клеточные органеллы, как микросомные частицы, как рибону-клеопротеины или просто как белоксинтезирующие машины. На деле же это макромолекулярные комплексы с определенной структурой, которые совместно с некоторыми вспомогательными факторами обладают определенными ферментативными активностями, необходимыми для различных этапов белкового синтеза. Вкратце рибосому можно представить как маленькую передвижную фабрику, которая, передвигаясь вдоль матрицы, осуществляет синтез пептидных связей. При этом с необычайно большой скоростью в рибосому входят (и выходят из нее) молекулы тРНК, несущие аминокислоты кроме того, с рибосомой циклически связываются (и отделяются от нее) факторы элонгации. [c.102]

    Обычно белки, которые выводятся из цитоплазмы, синтезируются на связанных с мембраной полирибосомах (полирибосомы, или полисомы, образованы большим числом рибосом, присоединенных к транслируемой мРНК). Связывание полирибосом с мембраной происходит за счет гидрофобной области сигнального пептида. У эукариот экспорт белков всегда сопряжен с трансляцией. Энергия, освобождающаяся в процессе элонгации поли-пептидной цепи, обеспечивает и процесс экспорта. У прокариот, в частности у Е. oli, экспорт белков может осуществляться и после завершения трансляции и зависит от трансмембранного электрохимического потенциала. Здесь лидерный пептид, видимо, играет определенную роль в изменении конформации предшественника, обеспечивающей сохранение его до начала транслокации в растворенном состоянии в цитоплазме. [c.66]


Смотреть страницы где упоминается термин Элонгация, определение: [c.248]    [c.622]    [c.139]    [c.214]    [c.232]    [c.509]    [c.513]    [c.527]    [c.533]    [c.195]    [c.225]    [c.467]    [c.469]    [c.172]    [c.929]    [c.196]    [c.73]    [c.86]    [c.86]    [c.275]    [c.276]   
Молекулярная биология Структура рибосомы и биосинтез белка (1986) -- [ c.56 ]




ПОИСК





Смотрите так же термины и статьи:

Элонгация



© 2025 chem21.info Реклама на сайте