Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеразы нуклеиновых кислот

    Реально системы, в которых происходит синтез биополимеров с нерегулярным запрограммированным чередованием мономерных остатков, функционируют таким образом, что несущая информацию нуклеиновая кислота протягивается через некоторое "считывающее устройство" — полимеразу нуклеиновых кислот или рибосому. Более корректным было бы сравнение таких систем не с типографской матрицей, а с магнитофоном, мимо головки которого проходит лента с записанной на ней информацией. Тем не менее термин "матричный биосинтез" в настоящее время общепринят. [c.162]


    Необычайный интерес в последние годы вызвали РНК-содержащие онкогенные вирусы. Большинство исследователей, занимающиеся биохимической генетикой и функциями нуклеиновых кислот, считали, что ДНК образуется только за счет репликации других молекул ДНК- Если транскрибирование РНК с ДНК может протекать свободно, то обратный процесс, а именно образование ДНК на РНК-матрице, считался маловероятным. Большой неожиданностью поэтому оказалось обнаружение во многих онкогенных РНК-содержащих вирусах, и в том числе в вирусах, вызывающих у животных лейкоз, РНК-зави-симой ДНК-полимеразы (т.е. обратной транскриптазы). Этот фермент обнаруживается в зрелых вирусных частицах. Наиболее тщательно очищенный фермент вирусов миелобластоза птиц состоит из двух белковых субъединиц, имеющих мол. вес ПО ООО и 70 000, и содержит два атома связанного Zn +. Для функционирования фермента необходима короткая затравка и матричная цепь РНК. При этом сначала получается гибрид ДНК—РНК, из которого затем (вероятно, после гидролитического расщепления цепи РНК под действием РНКазы Н, разд. Д, 5, в) получается двухцепочечная ДНК. Таким образом, заражение РНК-содержащими вирусами сопровождается образованием [c.288]

    В этом разделе рассматриваются основные ферменты биосинтеза нуклеиновых кислот, поскольку многие нз них широко используются в химико-ферментативном синтезе полинуклеотидов. Среди этих ферментов особый интерес представляют полимеразы и лигазы. [c.348]

    Полимеразы — класс ферментов, катализирующих процессы полимеризации родственных по свойствам мономерных звеньев. Примером может служить образование нуклеиновых кислот из нуклеотидов. [c.236]

    В организме нуклеиновые кислоты выполняют все свои функции в комплексе с белками (нуклеопротеиды), которые существуют или длительное время, например, хроматин, рибосомы, вирусные частицы, или короткое время, распадаясь после завершения своей функции, например, ДНК-, РНК-полимеразы, репрессоры, активаторы и др [c.924]

    ПОЛИМЕРАЗЫ ж мн. Класс ферментов, катализирующих реакции полимеризации близких по химическим свойствам мономерных звеньев (напр., нуклеотидов в нуклеиновые кислоты и др.). [c.330]

    В образованной РНК полностью совпадают с соотношением оснований и частотой повторяемости в затравочной ДНК. Исследования, проведенные с РНК-полимеразой из гороха, показывают тесную взаимосвязь между затравочной ДНК и вновь синтезированной РНК. С белком обе нуклеиновые кислоты образуют комплекс, строение которого не выяснено известно только, что соотношение РНК и ДНК в этом комплексе составляет 1 2. Имеются данные, что в природе встречаются комплексы ДНК — РНК. [c.479]


    Рис. 2.15. функционирование ДНК-полимераз. Двойная спираль ДНК состоит из двух полинуклеотидных цепей противоположной полярности (они антипа-раллельны ). Если свободная , не связанная с соседним нуклеотидом З -ОН группа находится у одной цепи на левом конце, то в другой цепи такая же группа находится на правом конце. Репликация ДНК катализируется ДНК-полиме-разами. Для функционирования такого рода ферментов необходимы 1) матрица, которая представляет собой одиночную цепь ДНК, 2) праймер-короткий отрезок реплицированной нуклеиновой кислоты и 3) смесь дезоксинуклеозид-5 -трифосфатов. ДНК-полимеразы способны присоединять свободные нуклеотиды только к свободному З -ОН-концу нуклеотидной цепи. Таким образом, синтез протекает только в направлении 5 - 3, но не наоборот. [c.39]

    Ряд важных биохимически.х процессов представляет собой перенос нуклеотидных остатков. По этому механизму проходит бгюсинтез нуклеиновых кйслот — нуклеотидные остатки переносятся от нуклеозидтрифосфата на растущую поли-нуклеотидную цепь с помощью соответствующих полимераз нуклеиновых кислот [c.140]

    При нормальном развитии процесса на каждый акт инициа1 ии и терминации биосинтеза приходится большое число актов элонгации, т. е. соединения очередного мономера с растущей цепью. Каждый акт элонгации проходит в активном центре соответствующей полимеразы нуклеиновых кислот или рибосомы, причем его непосредственными участниками являются концевая группа синтезируемого полимера, кодирующий элемент матрицы и очередная молекула мономера. Все эти участники должны быть закреплены определенным образом в активном центре полимеразы или рибосомы. Вытекающая из этих соображений схема активного центра матричного фермента представлена на рис. 48. По аналогии с активными центрами других, более просто устроенных ферментов можно ожидать, что такой активный цент]р должен быть уникальным. [c.175]

    Проведенное рассмотрение, а также множество экспериментальных данных свидетельствуют, что в ходе матричного биосинтеза происходит направленное перемещение матрицы относительно активного центра полимеразы нуклеиновых кислот или рибосомы. В этом смысле процесс считывания информации с молекул ДНК и мРНК скорее напоминает не снятие отпечатков с типографских матриц, а работу магнитофонной ленты, протягиваемой через считывающее устройство. Поэтому и говорилось, что термин матричный биосинтез и само понятие матрицы являются не вполне удачными. [c.176]

    Исключительно важные исследования в этой области, связывающие химию белка с химией нуклеиновых кислот, осуществлены в СССР Ю. А. Овчинниковым с сотр. В частности, из Е. СоИ выделены полинуклеотидфосфорилаза, ДНК-полимераза-1, полинуклео-тидлигаза. Определена полная последовательность аминокислот цитоплазматической аспартатаминотрансферазы, состоящей из 824 аминокислотных остатков. [c.180]

    Репликация вироидной РНК происходит в ядре зараженной клетки вероятная схема этого процесса такова (рис. 174). Сначала на кольцевой +)матрице синтезируется комплементарная (—)цепь. Эгот синтез осуществляется клеточным ферментом в качестве одного из кандидатов рассматривают ДНК-зависимую РНК-полимеразу И. Возможно, расширению специфичности этого фермента, обычно использующего двухнитевую ДНК-матрицу, способствует то обстоятельство, чго вироидная РНК содержит необычно высокую (для однонитевых нуклеиновых кислот) долю элементов с вторичной структурой. Синтез идет, вероятно, по модели разматывающегося рулона (см. раздел 1 этой главы), и в результате появляются линейные олигомерные (—)нити. Затем происходит образование линейных олигомерных (+)нитей не ясно, используются ли при этом в качестве матрицы олигомеры (-)нитей или образовавшиеся из них кольцевые молекулы. Далее линейные (+)олигомеры превращаются в кольцевые мономерные молекулы — конечный продукт реплика- [c.330]

    Использование гель-фильтрации для освобождения от радиоактивных предшественников неоднократно цитировалось при описании методов введения радиоактивной метки в белки и нуклеиновые кислоты [Остерман, 1983]. Нередко обессоливание используют и на заключительном этапе очистки для освобождения не только от соли, но и от прочих низкомолекулярных примесей. Например, в одной из работ по выделению РНК-полимеразы очисткой белка на биогеле А-1,5т завершалась целая серия операций, включавшая различные варианты переосаждений белка и ионообмениой хроматографии [Vaisius, Horgen, 1979]. [c.138]

    По своему существу аффинная хроматография — это особый тип адсорбционной хроматографии. В отличие от того, что было описано в гл. 6, адсорбция здесь осуществляется за счет биоспецифп-ческого взаимодействия между молекулами, закрепленными на матрице, т. е. связанными в неподвижной фазе, и комплементарными к ним молекулами, подлежащими очистке или фракционированию, поступающими, а затем элюируемыми с подвижной фазой. Биоспеци-фическое взаимодействие отличается исключительной избирательностью, а зачастую и очень высокой степенью сродства между партнерами. Оно лежит в основе множества строго детерминированных процессов, протекающих в организме. В качестве примеров можно назвать взаимодействия между ферментами и их субстратами, кофакторами или ингибиторами, между гормонами и их рецепторами, между антигенами и специфическими для них антителами, между нуклеиновыми кислотами и специфическими белками, связывающимися с ними в процессе осуществления своих функций (полимераза.мп, нуклеазами, гистонами, регуляторными белками), а также между самими нуклеиновыми кислотами-матрицами и продуктами их транскрипции. Наконец, многие малые молекулы (витамины, жирные кнслоты и др.) специфически связываются со специальными транспортными белками. [c.339]


    Кислый аминополисахарид гепарин [М> 10 ООО) известен в качестве антикоагулянта крови. Кроме того, он применяется в биохимии как ингибитор рибонуклеаз. Это его качество, по-видимому-отражает некоторое сходство полимера, содержащего две-три суль, фогруппы на каждую дисахаридную структурную единицу, с РНК-Две эти особенности определили использование гепарина в качеств, лиганда для аффинной хроматографии факторов коагуляции крове и (особенно широко) для очистки белков, взаимодействующих и нуклеиновыми кислотами (полимераз, обратной транскриптазы, рес стриктаз, факторов инициации и элонгации белкового синтеза и др.). Кроме того, иммобилизованный гепарин связывает липопротеид-липазы и некоторые липопротеиды. Гепарин-агароза выпускается всеми упомянутыми фирмами-поставщиками аффинных сорбентов, кроме Bio-Rad . [c.370]

    Помимо очистки мРНК п белков, связываюш ихся с ДНК, для олиго((1Т)-целлюлозы в последние годы открылась новая важная область применения — в качестве матрицы и затравки для полимераз и обратных транскриптаз, ведущих соответствующие комплементарные синтезы нуклеиновых кислот in itro. [c.373]

    Н.-мономерные звенья и промежут. продукты биосинтеза нуклеиновых кислот и нуклеотидкоферментов (см. Коферменты), участники мн. др. процессов в обмене в-в (см., напр., Аденозинфосфорные кислоты), исходные в-ва для хим. и хим.-ферментативного синтеза олиго- и полинуклеотидов. Они широко применяются в биол. исследованиях. Так, мн. нуклеозид-5 -трифосфаты, модифицированные по моносаха-ридному остатку (с заменой гидроксила в положении 3 на атом Н, др. атом или группу), включаются с помощью полимераз в цепь нуклеиновой к-ты, обрывая ее рост (терми-нация цепи). Благодаря этому такие Н. широко используют при выяснении первичной структуры нуклеиновых к-т (метод Сенгера). [c.305]

    К группе ингибиторов синтеза нуклеиновых кислот относятся фосфонаты. Так, фосфонуксусная кислота способна ингибировать ДНК-полимеразу вируса герпеса и других вирусных ДНК-полимераз [983]. Фосфонуксусная кислота подавляет также размножение вируса ветряной оспы у обезьян [931], эффективна против онковируса [984]. Описана активность дифосфонатов в подавлении вирусной ДНК-полимеразы [985, 986], обнаружено их противовоспалительное действие [972], [c.500]

    К другим примерам взаимодействия белок-нуклеиновая кислота можно отнести ферменты рибонуклеазы, дезоксирибонуклеазы, ДНК-зависимую РНК-полимеразу, ДНК-метилазы, а также ферменты, реактивирующие ДНК после фотооблучения. [c.570]

    Синтез ДНК на матрице РНК. Выдающимся достижением биохимии нуклеиновых кислот является открытие в составе онковирусов (вирус Раушера и саркомы Рауса) фермента обратной транскриптазы, или ревертазы (РНК-зависимая ДНК-полимераза), катализирующего биосинтез молекулы ДНК на матрице РНК. Накоплены данные о том, что многие РНК-содержащие онкогенные вирусы, получившие наименование онкорнавирусов, содержат ревертазу в составе покровных белков. Фермент открыт также во многих клетках прокариотов и эукариотов, в частности [c.486]

    Химическая структура нуклеиновых кислот будет описана в 2.3. Здесь же уместно кратко описать основные принципы, заложенные в структуре молекулы ДНК, которые обеспечивают возможность самокопирования ДНК независимо от нуклеотидной последовательности. При делении клетки информацию, заложенную в молекулах ДНК этой клетки в виде определенной последовательности нуклеотидов, необходимо передать двум вновь образованным дочерним клеткам. Поэтому из одной молекулы ДНК перед клеточным делением должно образоваться две с той же нуклеотидной последовательностью. В живых организмах ДНК в период между ее удвоением всегда существует в виде двух связанных друг с другом полинуклеотидных цепей (нитей). Связь эта осуществляется в результате того, что каждый из четырех составляющи. ДНК типов нуклеотидов резко предпочтительно взаимодействует с одним из тре.ч остальных. Поэтому нуклеотидные последовательности этих нитей взаимно однозначно соответствуют друг другу, или, как принято говорить, комплементарны друг другу. Следовательно, каждая цепь содержит информацию о комплементарной нуклеотидной последовательности другой цепи. Будучи разделенными, цепи со.чраняют необходимую информацию для построения из нуклеотидов новы.к комплементарны. цепей и, таким образом, осуществляют воспроизведение информации, заложенной в двуспиральной структуре. Процесс самоудвоения ДНК, т.е. образования двух новых двуни-тиевых молекул ДНК, идентичных первоначальной молекуле, называют репликацией ДНК. Химические события, лежащие в процессе репликации, состоят в последовательном присоединении нуклеотидов друг к другу. Этот процесс в живых организмах осуществляет специальный фермент — ДНК-полимераза. Изучение свойств и механизмов функционирования этого фермента в клетке показало, что он работает только в присутствии материнской двуспиральной ДНК. Цепи материнской ДНК направляют образование новых комплементарных цепей, т.е. на каждой стадии роста новой цепи осуществляют отбор одного из четырех мономеров и присоединения его к растущей цепи. [c.18]

    Как видно из уравнения (V.3), в реакции помимо фермента участвует три компонента матрица, растущая цепь и субстрат. Наличие в системе фрагмента нуклеиновой кислоты, комплементарного матрице, является необходимым условием функционирования ДНК-полимераз. Этот фрагмент называют затравкой по аналогии с затравочным кристаллом, вносимым в насыщенный раствор при кристаллизации, или, чаще праймером (русифицированный вариант английского термина primer). [c.177]

    Но особенно революционизирующее влияние на экспериментальные возможт ности биохимии оказало применение ферментов матричного биосинтеза, в первую очередь ДНК-полимераз. Аналитические возможности в биохимии нуклеиновых кислот неизмеримо возросли с появлением амплификации, т.е. размножстия молекул ДНК с определенной последовательностью нуклеотидов с помощью ДНК-полимеразы. Применение прямой и обратной транскрипции позволило перенести многие методы, разработанные применительно к ДНК, на рибонуклеиновые кислоты (см. 7.6). [c.232]

    Практически параллельно с методом Максама — Гилберта был развит другой метод секвенирования ДНК, получивший по имени создавшего его автора название метод Сэнгера. Этот метод считается наиболее перспективным для исследования первичной структуры больших молекул нуклеиновых кислот, вплоть до ДНК хромосом человека. В бго основе лежит анализ структуры не самой нуклеиновой кислоты, а продукта, получаемого в ходе ее репликации с помощью ДНК- юлимеразы. Аналогично, используя обратную транскрипцию, с помощью РНК-зависимой ДНК-полимеразы можно анализировать структуру молекул РНК. [c.281]

    Ферменты, катализирующие матричный синтез нуклеиновых кислот, называются ДНК- или РНК-полимеразами. В некоторых случаях цепь мРНК может служить матрицей не только для синтеза белка, но и для синтеза ДНК. Этот процесс катализируется ферментом обратной транскриптазой. Каждый из трех синтезов биополимеров включает в себя три этапа инициацию — начало образования полимера из двух мономеров, элонгацию — наращивание полимерной цепи и терминацию — прекращение матричного синтеза. Механизмы синтеза ДНК одинаковы для прокариот и для эукариот. В их основе заложены принципы комплементарности азотистьгх оснований (А=Т и Г=Ц), обеспечивающие строгое соответствие нуклеотидной последовательности родительской и дочерней цепей ДНК. [c.450]

    Комплекс современных методов синтеза нуклеиновых кислот позволяет исходя нз мононуклеотидов получать гены, кодирующие белки длиной более 100 аминокислотных остатков. Первым этапом работы является химический синтез олнгодезоксирнбонуклеотидов, которые затем с помощью ферментов нуклеинового обмена, таких, как Т4 полннуклеотидкнназа, Т4 ДНК-лигаза и ДНК-полимеразы, превращаются в двухцепочечные фрагменты ДНК (рнс, 207). Мето- [c.370]

    Все функции нуклеиновых кислот в организме осуществляются в комплексах с белками. В то же время лишь некоторые белки аыполняют свои функции в комплексе с нуклеиновыми кислотами. Такие комплексы называются иуклеопротеидами. Одни нуклеопротеиды существуют в течение длительного времени, например хроматин, рибосомы, вирусные частицы. Другие возникают ма короткое время и, выполнив свою функцию, диссоциируют—к ним относятся комплексы, образуемые ДНК- и РНК-полимеразами, регуляторными белками, репрессоры или активаторы и т. п. Нуклеопротеиды осуществляют такие важные процессы в клетке, как репликация, транскрипция и трансляция, транспорт нуклеиновых кислот из ядра в клетку, секреция белков в эукариотических клетках и т. п [c.397]

    В1аимодействия в процессе узнавания могут быть специфическими и неспецифическими. Под специфическим нуклеиноао-бел-ковым взаимодействием подразумевается кооперативное взаимодействие определенных групп белка и нуклеиновой кислоты, возникающее за счет характерного для данного белка и данной нуклеиновой кислоты пространственного расположения этих групп. Примеры специфических взаимодействий репрессоры и операторы, РНК-полимераза и промоторы. [c.405]

    Новобиоцин вначале нарушает синтез ДНК, позднее — РНК и белка. Он подавляет синтез нуклеиновых кислот на уровне комплексов матрицы с полимеразой. По данным Брока (1969), все эффекты ново-биоцина связаны с потребностью клеток в ионах магния [22]. [c.109]

    Нуклеиновые кислоты - белки. Эта взаимосвязь выражается прежде всего в том, что новообразование как нуклеозидтрифосфатов, так и самих нуклеиновых кислот зависит от наличия в клетке соответствующего набора белков-ферментов (ДНК- и РНК-полимераз, лигаз, топои-зомераз, а также ферментов биосинтеза пуриновых и пиримидиновых циклов). Кроме того, аминокислоты (аспарагиновая - в случае пиримидиновых нуклеотидов и глицин, аспарагиновая кислота и глутамин [c.458]

    ТРАНС-ИЗОМЕРЫ, см. Геометрическая изомерия. ТРАНСКРИПЦИЯ, перенос генетич. информации, с помощью к-рого нуклеотидная последовательность ДНК определяет порядок расположения нуклеотидов в РНК. Осуществляется путем матричного синтеза РНК, последовательность рибонуклеотидов в к-рой комплементарна (см. Нуклеиновые кислоты) последовательности дезоксирибо-нуклеотидов в одной из двух цепей ДНК и гомологична (подобна) их последовательности во второй цепи ДНК. Синтезируется РНК с помощью фермента РНК-полимера-зы из рибонуклеозид-5 -трифосфатов последоват. наращиванием цепи РНК в направлении от 5 - к З -концу. Известна также обратная Т. (синтез ДНК на матрице РНК) — один из этапов репликации РНК-содержащих вирусов. Осуществляется фермеетом РНК-зависимой ДНК-полимеразой (обратная транскриптаза). За открытие обратной Т. Д. Балтимор и X. Темин в 1975 удостоены Нобелевской премии. ТРАНСЛЯЦИЯ, процесс, с помощью к-рого нуклеотидная последовательность матричной РНК (мРНК) определяет расположение аминокислот в синтезируемом белке. Заключит. стадия реализации генетич. кода — перевод 4-буквен- [c.587]

    Основные научные работы посвящены изучению ферментов обмена белков и нуклеиновых кислот, энзимологии генетических процессов, цитохимии. Одним из первых доказал существование регуляции синтеза белков на уровне генов. Доказал, что наряду с известным реирессорным механизмом в клетках действует и позитивный механизм регуляции транскринции, основанный на способности белков (в частности, РНК-полимеразы) узнавать определенные нуклео- [c.539]

    Вирусы — мельчайшие из инфекщюнных организмов. Хотя противовирусная химиотерапия по сравнению с антибактериальной находится в зачаточном состоянии, здесь также имеются яркие достижения. Вирусы содержат очень мало генетической информации и могут быть подвергнуты химическому воздействию лишь на немногих биохимических стадиях своего существования. В борьбе за выживание вирусы захватывают и подчиняют себе клеточный аппарат размножения. Это, к сожалению, означает, что многие стадии биологических процессов у вирусов и млекопитающих идентичны. Поэтому трудно воздействовать на вирус, не подвергая опасности организм-хозяин. Чтобы найти безвредное терапевтическое средство, необходимо идентифицировать биохимические процессы, уникальные для клетки, пораженной вирусной инфекцией. Вирусная ДНК-поли-мераза представляет возможный объект атаки. Этот фермент участвует в синтезе вирусных нуклеиновых кислот. Известны примеры соединений, которые действуют как ингибиторы вирусной ДНК-полимеразы, однако часто это соединения применимы лишь для локального воздействия. Противолишайное средство ацикловир эффективно только при локальном воздействии, а также при пероральном и внутривенном введении. Оно относительно безопасно, так как на ферменты незаряженных клеток не действует. Ацикловир приобретает способность блокировать синтез вирусной ДНК лишь в присутствии определенных вирусных ферментов. [c.99]

    Архебактерии отличаются от эубактерий по составу ДНК-зависимых РНК-полимераз эти ферменты состоят у них из более чем четырех субъединиц и нечувствительны к антибиотикам рифампицину и стрепто-лидигину. Рибосомные нуклеиновые кислоты (16S и 5S) существенно отличаются по последовательности нуклеотидов. Трансляция нечувствительна к хлорамфениколу, однако тормозится дифтерийным токсином, [c.108]


Смотреть страницы где упоминается термин Полимеразы нуклеиновых кислот: [c.429]    [c.494]    [c.317]    [c.212]    [c.587]    [c.501]    [c.212]    [c.216]    [c.89]    [c.227]    [c.79]    [c.232]    [c.263]   
Биохимия Том 3 (1980) -- [ c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2024 chem21.info Реклама на сайте