Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

сдвиг скорости реакций

    Для большинства ферментов имеется определенное значение pH, при котором их активность максимальна выше и ниже этого значения их активность уменьшается. Для разных субстратов оптимум по pH может сдвигаться. Некоторые примеры приведены в табл. 6.9. Однако не во всех случаях кривые зависимости каталитической активности от pH имеют колоколообразную форму. Примером может служить инвертаза, катализирующая гидролиз сахарозы. Она сохраняет постоянную активность в интервале pH 3,0—7,5. С увеличением концентрации фермента скорость реакции увеличивается (см. уравнение [c.302]


    Дальнейшие исследования позволили выявить оптимальные значения объемной скорости подачи сырья и температуры. Оптимальная температура для катализатора 1 составляет 330"С. При ней достигается максимальная глубина деароматизации (рис. 2.4). Существование максимума обусловлено сдвигом термодинамического равновесия реакции в сторону образования нафтеновых углеводородов при уменьшении температуры. Влияние объемной скорости подачи сырья на глубину деароматизации при 290-310°С относительно невелико, что можно объяснить низкой скоростью реакции при этих температурах. По мере снижения объемной скорости подачи сырья глубина деароматизации возрастает. [c.44]

    Из уравнения (71.15) вытекает, что изменение состава раствора может влиять на скорость электровосстановления через изменение %-иотенциала и коэффициента активности реагирующего вещества /j. Так, сдвиг з -иотенциала в положительную сторону уменьшает скорость восстановления нейтральных молекул. Характер зависимости от состава раствора определяют силы взаимодействия фонового электролита с молекулами растворителя и молекулами реагирующего органического вещества. При сильном взаимодействии ионов с молекулами растворителя происходит высаливание — активность органического вещества в растворе возрастает, и скорость реакции увеличивается. Если же, наоборот, ионы сильнее взаимодействуют с молекулами органического вещества, чем с молекулами растворителя, то происходит всаливание — коэффициент активности реагирующих молекул падает и скорость реакции уменьшается. Такое явление наблюдается, например, при добавлении в раствор катионов ТБА. [c.396]

    Из приведенных выражений видно, как видоизменяются константы скорости реакций, которые умножаются на дополнительные факторы, зависящие от температуры и давления. Из уравнения (IV.57) ясно, что при р > О и а <0 скорость реакции увеличивается с ростом давления, вследствие увеличения множителя перед квадратными скобками и благоприятного сдвига равновесия реакции. [c.83]

    Характерная особенность структуры мицелл — это гидрофобное ядро, образованное углеводородными цепями молекул ПАВ, окруженное гидрофильным слоем их головных групп. Этим создается некоторое подобие мицеллярной структуры со структурой глобулярных белков (см. гл. I). Однако если белковая глобула — это относительно жесткое и весьма неоднородное образование, то мицелла ПАВ, напротив, носит псевдожидкий характер [1001 и образована совершенно идентичными молекулами ПАВ. Хотя эти различия и накладывают существенные ограничения на использование мицелл как моделей ферментов [1011, с другой стороны, именно благодаря простоте в построении мицелл в мицеллярных системах наиболее четко и достоверно могут быть прослежены такие эффекты, как стабилизация переходного состояния химической реакции за счет дополнительных сорбционных взаимодействий (или же сближение реагентов при их концентрировании), далее сдвиг р/Са реагирующих групп и влияние микросреды на скорость реакции. [c.115]


    Решение. Из рис. У1-9 следует, что снижение давления, согласно принципу Ле Шателье, сдвигает равновесие реакций вправо (выделение водорода) процесс при этом проходит при более низкой температуре. Выбор оптимальных условий зависит от того, какой из продуктов будет целевым, нужно ли уменьшить содержание побочного продукта до минимума (например, иногда побочный продукт используется в другом синтезе), можно ли применить рециркуляцию, необходимо ли добиться определенной скорости реакции (кинетический фактор). Приняв, что реакция проходит достаточно быстро, рассмотрим указанные в условиях примера случаи. [c.179]

    Реакцию ведут прп температуре около 500 °С, компенсируя вызываемый этим сдвиг равновесия влево повышенным давлением. Рис. 115 показывает, как изменяется содержание аммиака при достижении равновесия в системе в зависимости от температуры и давления. Нетрудно убедиться, что один и тот же выход аммиака может быть получен как при сравнительно низкой, так и при более высокой температуре, если в последнем случае увеличить давление. Но при повышении температуры возрастает скорость реакции и нужное количество аммиака получается за более короткое время. [c.406]

    Учитывая инвариантность решения относительно сдвига вдоль координаты г, можно считать 01г=о = 0. Смысл необходимого условия и сделанного предположения состоит в том, что формирование и распространение волны со стационарным профилем возможно лишь тогда, когда температура на входе в слой катализатора настолько мала, что скоростью химической реакции при этой температуре можно пренебречь но сравнению со значениями скорости реакции в области наиболее активного превращения вещества. Так же как и в теории горения [91, это означает, что стационарное распространение фронта реакции описывает процесс приближенно, асимптотически. [c.31]

    Повышение концентрации продукта, как правило, тормозит общую скорость реакции, так как при этом сдвигается адсорбционное равновесие и увеличивается поверхность катализатора, занятая продуктом. При катализе на пористых зернах катализатора возрастание концентрации продукта увеличивает внутри- и внешнедиффузионное торможение. Сильное повышение концентрации продукта в некоторых реакциях приводит к отравлению катализатора. Однако в автокаталитических процессах появление продукта и рост его концентрации ускоряет реакцию. [c.86]

    Реакция образования димера обратима, протекает с выделением тепла и значительно быстрее, чем реакция его последующего окисления. Поэтому при повышении температуры равновесие реакции образования димера сдвигается влево и равновесная концентрация димера в газе понижается. Так как скорость реакции окисления димера  [c.220]

    ИОГО кокса возрастает. При малых скоростях продукты первичного распада кокса способны более эффективно реагировать со свободными радикалами кристаллитов кокса, препятствуя таким образом пх ассоциации и сдвигая направление реакций в сторону образования более низкомолекулярных соединений (летучих веществ). [c.205]

    Таким образом замещение водорода метиленовой группы в дифенил-метане на фенил пе только увеличивает скорость крекинга, но и сдвигает направление реакции в сторону образования продуктов конден- сации. Нетрудно предвидеть, что крекинг тетрафенилметана будет направлен почти исключительно в сторону образования продуктов конденсации. [c.177]

    Переход системы из одного равновесного состояния в другое, отличающееся от первого концентрациями участвующих в реакции веществ и скоростями реакций, называется сдвигом (смещением) химического равновесия. [c.12]

    Потенциал полуволны оказывается функцией концентрации, сдвигаясь в сторону отрицательных значений с ростом концентрации исходного соединения. Это связано с тем обстоятельством, что с увеличением концентрации скорость бимолекулярного процесса (7.63) возрастает быстрее, чем скорость реакции [c.257]

    Синтез аммиака было бы выгодно проводить при низких температурах. Однако при этом очень мала скорость реакции. При высоких температурах равновесие сдвигается в сторону диссоциации МНз и его выход становится низким. Решение задачи, осуществленное в промышленности, сводится к проведению синтеза при высоких температурах и высоких давлениях — порядка 1000 атм. [c.51]

    Рассмотрим процесс обмена в общем виде. В спектре ПМР смеси двух соединений при отсутствии обмена или в случае медленного обмена (рис. 52) наблюдаются два различных пика, отвечающие протону в окружении Лив окружении В. Сравним разность химических сдвигов Av в ядра в окружении Айв окружении В, выраженную в герцах , с числом актов обмена А—Н. .. В i= А. .. Н — В в единицу времени, т. е. с константой скорости реакции к, которую тоже выражают в герцах. Расчет показывает, что два пика и va бу- [c.117]


    Реакция идет с выделением теплоты, поэтому в соответствии с принципом Ле Шателье понижение температуры должно сдвигать равновесие в сторону образования большего количества водорода, и наоборот — повышение температуры будет сдвигать равновесие справа налево. Однако если вести процесс при низких температурах, то вследствие малой скорости реакции равновесие устанавливается очень медленно, и поэтому выход водорода в единицу времени будет небольшой. [c.294]

    Изучение бимолекулярных реакций присоединения представляет особый интерес, поскольку можно ожидать, что они при достаточно низких концентрациях реагентов дают ту же зависимость скорости реакции от суммарной концентрации, как и в случае мономолекулярных реакций. Действительно, простейшие из таких процессов, например рекомбинация атомов при нормальных концентрациях газа, никогда не подчиняются простому кинетическому закону второго порядка, а проявляют зависимость скорости реакции от концентрации. При этом, согласно эксперименту, кинетика реакции подчиняется закону третьего порядка. Рассматривая зависимость реакции мономолекулярного распада от давления (см. табл. XI.2), можно прийти к заключению, что область зависимости скорости реакции от суммарной концентрации сдвигается все более и более к низким концентрациям по мере того, как растет число атомов в молекуле продукта реакции. Это находится в качественном согласии с экспериментом. Реакция присоединения молекул бутадиена не дает никакого отклонения от закона второго порядка вплоть до давления 10 ммрт. ст. (при 200°С), тогда как скорость рекомбинации радикалов СНз уже дает отклонения в сторону закона третьего порядка при [c.266]

    Вестхеймер и Караш нашли, что положение максимума скорости нитрования сдвигается в область более высокой концентрации серной кислоты в результате прибавления гидросульфата калия. Так как ион бисульфата в серной кислоте является основанием, то он должен был бы действовать в направлении понижения кислотности для данной концентрации серной кислоты. Добавление азотной кислоты, хотя и увеличивает абсолютную скорость реакции, снижает константу скорости реакдии, если концентрация серной кислоты значительно ниже оптимальной. Это может быть отнесено за счет азотной кислоты, вызывающей уменьшение кислотности среды. Подобным же образом понижает кислотность среды и нитробензол. Динитробензол и пятиокись фосфора не изменяют кислотности сернокислотной среды и не влияют на константу скорости реакции нитрования. [c.560]

    С такими основаниями, как трет-бутоксид калия, реакции проводят большей частью в полярных апротонных растворителях, однако иногда используют и бензол, в котором такие основания растворяются довольно плохо. В том и другом случае прибавление краун-эфира не только изменяет растворимость, но, кроме того, оказывает сильное влияние на ассоциацию ионов. Это приводит, как уже указывалось выше, к радикальному изменению скоростей реакций, ориентации и стереохимии -элими-нирования [454, обзор 455]. Гладко и в мягких условиях проходит дегидрогалогенирование хлор- и бромалканов при нагревании их с твердым трег-бутоксидом калия и 1 мол. % 18-крауна-б в петролейном эфире при температуре более низкой, чем температура кипения образующегося алкена. В этих условиях бор-нилхлорид, например, за 6 ч при 120°С образует 92% борнена без примеси камфена и трициклена [1104]. В сходных условиях из 1,2- и 1,1-дигалогенидов можно получить 1-алкины. Геминаль-ные дихлориды (полученные из кетонов и P I5) с прекрасным выходом дают замещенные алкины. Изомеризация этих алки-нов в аллены или сдвиг тройной связи в другое положение протекает существенно медленнее, чем обычный процесс элиминирования. -Галогеналкены подвергаются смн-элиминированию под действием системы грет-ВиОК/краун, давая алкины с хорошим выходом [1105]. [c.240]

    Из приведенных графиков видно, что все кри-170 вые изменения степени превращения на интервалах слоя имеют максимумы, положение и величи-Ш на которых зависят от других параметров. Увеличение скорости потока уменьшает в данном случае максимум степени превращения и сдвигает его по направлению потока. Повышение исходной температуры газа увеличивает максимум степени превращения и сдвигает его по направлению ко 130 входу реактора. При мольном отношении ре-210 агентов, превышающем оптимальное (1 55), максимум степени превращения уменьшается. При мольном отношении, не достигающем оптимального, максимум также понижается. По результатам измерений степени превращения и темпера-130 туры Паштори и др. рассчитали кинетические 2Ю параметры — такие, как константы равновесия и константы скорости реакции. [c.178]

    Образующаяся вода непрерывно выводится вместе с непрореагировавшим аммиаком из зоны реакции, йлагодаря чему равновесие реакции сдвигается в сторону образования нитрила. Недостаток этого метода — сравнительно малая скорость реакции аммонолиза. Для ускорения реакции в качестве катализаторов рекомендуют использовать фосфорную кислоту, ацетат или нафтенат марганца н др. в количестве от 0,5 до 3% (масс.) кислоты. [c.299]

    Дегидроциклизация протекает поглощением тепла (251 17 кДж/моль), поэтому констакта равновесия реакции возрастает с иовыщегшем температуры. Давление сдвигает равновесие реакции влево — в сторону гидрирования аренов. Одиако иа практике для уменьшения отложений кокса иа катализаторе процесс проводят под повышеииым давлением водорода. Скорость дегидроциклизации возрастает с увелич( иием длины цени алкаиов. [c.252]

    Когда сдвиг применяют к межфазной пленке, составляющие ее молекулы, а также молекулы масляной и водной фаз, расположенные в непосредственной близости, смещаются со своих равновесных положений. Развиваемое напряжение влияет на ассоциативные молекулярные перегруппировки. Это явление теоретически рассмотрено Джоли (1954, 1956) и Олдройдом (1953, 1955). Джоли (1954, 1956) применил теорию абсолютных скоростей реакций Эйринга, которая дает следующее уравнение (Эвелло и Эйринг, 1937 Мур и Эйринг, 1938)  [c.291]

    Выбор условий проведения процесса большей частью обусловливается экономическими соображениями. Как улге отмеча,пось, при повышении температуры равновесие резко сдвигается в Toj)ony дегидратации спирта, тогда как скорость гидратации увеличивается. Отсюда получается, что при определенной величине активности катализатора повышение скорости реакции вызывает увеличение объема этилена, подвергающегося рециркуляции, так как за проход его реагирует меньше. Увеличение объема рециркулирующих газов повышает расход энергии. Степень превращения этилена за проход МО /КПО повысить увеличением давления, но это влечет за собой донол-нител]лн.1е расходы. Состав смеси паров воды и этилена также определяется частично экономическими соображениями. При сни/кении парциального давления воды ее степень превращения за проход увеличивается, а этилена падает. Следовательно, это также увеличит степень рециркуляции этилена. Правда, одновременно уменьшится количество тепла, требующееся для испарения воды. Наиболее экономичными будут условия, при которых расход энергии иа повышение рециркуляции этилепа будет уравновешиваться снижением расходов на испарение воды. [c.459]

    Таким образом, одной из первых задач, стоявших перед исследованием, являлось решение вопроса о толе, чем объясняется сдвиг Д1аксимума скорости окисления метана, а также почему в одних условиях после его достижения скорость реакции спадает, а в других — остается постоянной почти до конца превраш,енпя. Последнее, т. е. выяснение причины, почему в ряде случаев скорость иепзмеипа па подавляющей части реакции (несмотря на израсходование исходных веществ), является актуальным не только в случае метана, по и в случае этилена и ацетилена. Действительно, как было показано (см. стр, 15), это явление наблюдается и для последних двух углеводородов. [c.281]

    В соответствии с этим уравнением, увеличение концентрации водородных иоиов сдвигает равновесие вправо (т. е., в конечном счете, увеличивает процентное содержание окисленного железа). Однако влияние pH на скорость реакции имеет совершенно противоположный характер в сильно подкисленных растворах окисление железа дeт чрезвычайно медленно. Таким образом, влияние различных катализаторов (в том чусле и ионов Н + ) на скорость реакции своеобразно и обычно не связано непосредственно с величиной окислительного потенциала. [c.355]

    Как было указано ( 97), влияние различных факторов на состояние равновесия может иметь другой характер, чем влияние этих же факторов на скорость реакции. Иэны двухвалентного марганца несколько сдвигают равновесие влево, но очень сильно увеличивают скорость реакции (5) в соответствии с уравнениями промежуточных реакций (7) и (8). [c.379]

    В титриметрии чаще всего имеют цело с гомогенным катализом, причем катализатором может быть постороннее вещество или процукт реакции (автокатализ). Катализаторы меняют скорость реакции, не сдвигая равновесия, в результате изменения активности ионов или молекул. В растворе протекает ряц промежуточных реакций, при этом образуются малоустойчивые вещества с высокой энергией. Эти промежуточные соединения разлагаются, и происходит регенерация катализатора, который в конечном счете химически не изменяется, хотя и может участвовать в реакции, причем это участие носит циклический характер. В качестве примера каталитической реакции можно привести важную в окислительно-восстановительном титровании реакцию межцу перманганатом и оксалатом. [c.137]

    Рассмотрим теперь влияние специфически адсорбирующихся анионов на скорость реакции разряда катионов НзО на ртутном электроде. При специфической адсорбции анионов потенциалы внутренней и внешней плоскостей Гельмгольца (а следовательно, и 1-потенциал) сдвигаются в отрицательную сторону, что согласно уравнению (60.3) должно уменьшать перенапряжение. На рис. 135 приведены кривые перенапряжения водорода на ртути в подкисленных растворах солей поверхностно-активных анионов при постоянной ионной силе раствора. Постоянная общая концентрация выбирается для того, чтобы исключить эффект увеличения т . Как видно из рис. 135, экспериментальные данные подтверждают вывод об ускорении реаи ции разряда катионов в присутствии специфически адсорбированных анионов, причем уско- [c.253]

    Рассмотрим теперь влияние специфически адсорбирующихся анионов на скорость реакции разряда катионов Н3О+ на ртутном электроде. При специфической адсорбции анионов потенциалы внутренней и внешней плоскостей Гельмгольца (а следовательно, и 1з1-потенциал) сдвигаются в отрицательную сторону, что, согласно уравнению (50.3), должно уменьшать перенапряжение. На рис. 135 приведены кривые перенапряжения водорода на ртути в подкисленных растворах солей поверхностно-активных анионов при постоянной ионной силе раствора. Постоянная общая концентрация выбирается для того, чтобы исключить эффект увеличения т). Как видно из рис. 135, экспериментальные данные подтверждают вывод об ускорении реакции разряда катионов в присутствии специфически адсорбированных анионов, причем ускоряющий эффект проявляется только в области их адсорбции. Этот результат означает, что эффект увеличения поверхностной концентрации НзО" в присутствии адсорбированных анионов превалирует над эффектом возрастания энергии активации [пропорциональной (ф — Ifii)], когда гр1-потенциал сдвигается в отрицательную сторону. [c.269]

    Другой аргумент в пользу разряда анионов через катионные мостики, когда ф)] Ф ф>о, вытекает из температурной зависимости тока в минимуме на г, ф-кривой. Поскольку в этой точке ф in Ид ф )т= = д In Ид( )т = О, то в соответствии с уравнениями (49.18) — (49.20) в минимуме /, ф-кривой А = W. Таким образом, по температурной зависимости минимального тока можно определить идеальную энергию активации W. Для реакции восстановления SjOj на ртутном электроде в присутствии катионов Na+ W = 4,1 ккал моль, а в присутствии катионов s W = —2 ккал моль. В первом случае скорость реакции возрастает с температурой, хотя и значительно медленнее, чем этого можно было бы ожидать для реакции, контролируемой скоростью разряда. Во втором случае скорость реакции падает с ростом температуры. Этот результат можно объяснить разрушением катионных мостиков с ростом температуры, что эквивалентно уменьшению поверхностной концентрации реагирующих анионов при размазывании заряда по внешней плоскости Гельмгольца. Таким образом, регистрируемая энергия активации W по существу является эффективной величиной, отражающей сумму двух противоположных эффектов ускорения стадии разряда за счет снижения высоты потенциального барьера и уменьшения скорости в результате сдвига истинного значения ф>1 в отрицательную сторону при разрушении катионных мостиков. При разряде анионов SjOr в присутствии Na+ преобладает первый эффект, а на фоне s — второй. [c.286]

    Как известно, многие химические реакции, для которых характерны высокие энергии активации, при обычных условиях протекают очень медленно, а при нагревании скорость реакции возрастает. Однако нагревание как способ увеличения скорости реакции не всегда возможно. Например, регулировать скорости химических реакций, протекающих в живых организ- -мах, изменяя температуру в широких пределах, вообще нельзя. К тому же для обратимых реакций, как было показано на примере реакции синтеза аммиака, повышение температуры приводит к сдвигу химического равновесия в сторону уменьшения выхода аммиака, что не выгодно для производства. Поэтому в практике для регулирования скоростей реакций используют катализаторы. [c.119]

    Эта реакция обратима (при повыи]ении температуры равновесие сдвигается влево), вот почему ее следует проводить при низких температурах. Однако при низких температурах очень мала скорость реакции, поэтому ее ведут при повышенных температурах (400—450° С) и высоких давлениях (300—400 атм), так как повышение давления сдвигает равновесне вправо, [c.206]

    Увеличение или уменьшение концентрации одного из ионоп, образующихся при диссоциации эле1стролита ( одноименного иона ), увеличивает или уменьшает скорость реакции (прямой или обратной) и приводит к сдвигу равновесия в соответствующем направлении. [c.101]


Смотреть страницы где упоминается термин сдвиг скорости реакций: [c.41]    [c.173]    [c.152]    [c.191]    [c.92]    [c.354]    [c.383]    [c.383]    [c.94]    [c.262]    [c.143]    [c.293]   
Основы органической химии Часть 1 (2001) -- [ c.205 , c.208 , c.257 ]




ПОИСК





Смотрите так же термины и статьи:

Симбатность между скоростью реакции и концентрацией разветвляющего продукта, сдвиг максимума скорости, роль формальдегида и изменение порядков в окислении метана



© 2025 chem21.info Реклама на сайте