Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация эфиров акриловой кислоты ) (акрилатов)

    Полимеризация эфиров акриловой кислоты (акрилатов) [c.268]

    Полимеризация эфиров акриловой кислоты осуществляется легко. Акрилаты образуют твердые стекловидные материалы, аналогичные метакрилатам, но с худшими свойствами. По этой причине метакриловые эфиры более предпочтительны для получения прозрачных пластичных материалов. [c.221]

    В работе установлена зависимость скорости сополимеризации винилхлорида с эфирами акриловой кислоты в эмульсии от длины спиртового (от С2 до Сд) радикала эфира. Чем короче алкильный радикал, тем больше скорость сополимеризации. Это объясняется более высокой растворимостью короткоцепных эфиров в воде и большей скоростью их диффузии в зону полимеризации. Однако при сополимеризации винилхлорида с акрилатами в массе скорость процесса и величины констант сополимеризации практически одинаковы для эфиров с различной длиной спиртового радикала. [c.268]


    Акриловая кислота — жидкость раздражающего запаха, склонная к полимеризации. Особенно склонны к полимеризации ее сложные эфиры — акрилаты. [c.297]

    Полиметилмет-акрилат (органическое стекло, плексиглас) Полимеризация метилового эфира мет-акриловой кислоты Г— СН2— С(СООСНз)-] L сн3 L  [c.180]

    Водно-эмульсионную полимеризацию акрилатов применяют для получения литьевых и прессовочных порошков, а также стойких водяных дисперсий типа латекса. Воду и акриловый эфир берут в отношении 2 1. Если требуется жесткий упругий материал, то рационально применять бисерный метод суспензионной полимеризации, получая гранулированный полимер. Инициатором служит перекись бензоила, которую растворяют в мономере (от 0,5 до 1%). В качестве эмульгатора применяют карбонат магния, а также полиакриловую кислоту, поливиниловый спирт и другие водорастворимые полимеры. Величина гранул зависит от концентрации эмульгатора и скорости перемешивания. Воду и мономер берут в соотношениях 2 1 или 3 1, Процесс производства гранулированного полимера складывается из загрузки сырья в реактор, полимеризации, фильтрации и промывки гранул полимера, сушки и просеивания. [c.130]

    Детально изучена полимеризация акрилонитрила и эфиров акриловой кислоты в присутствии третичных фосфинов, которые, по-видимому, инициируют анионную полимеризацию указанных мономеров за счет образования интермедиатов бетаинового типа [77]. В некоторых случаях удается остановить реакцию на стадии димера, как, например, при присоединении эфиров фумаровой кислоты к акрилатам, катализируемом трициклогексилфосфи-ном (уравнение 56). Третичные фосфины являются очень эффективными катализаторами в реакциях присоединения по Михаэлю, причем в данном случае они играют роль нуклеофильных агентов, а не оснований [78]. [c.625]

    Пластмассы прежде всего различаются по химическому характеру связующего (смолы). Так, например, по применяемому связующему различают фенопласт — связующим является продукт фенолоальдегидной конденсации аминопласт — продукт аминоальдегидной конденсации акрилат — продукт полимеризации эфиров акриловой и метакриловой кислот целлопласт— общее обозначение производных целлюлозы и т. д. [c.21]

    Метиловый эфир акриловой кислоты, или метилакрилат, а также этилакрилат и аллилакрилат, впервые были получены в 1873 г. Каспари и Толленсом путем отщепления брома от соответствующего эфира а,Р-дибромпропионовой кислоты цинком. При этом спО собность полимеризоваться была отмечена только за аллилакрилатом. Полимерный метилакрилат спустя семь лет описал Кальбаум, а полимеризацию этилового эфира наблюдал в 1883 г. Вегер. Изучением полимеризации акрилатов занимался Рём, а позже в 1929 г. и в последующих годах Штаудингер со своей школой опубликовал несколько работ, предметом которых явилось обстоятельное исследование полимеризации акриловых эфиров и изучение свойств полимеров. Начало производства пластических масс из метилакрилата относится приблизительно к 1920 г. позже для той же цели начали применять и другие эфиры акриловой кислоты. Производство метилового эфира акриловой кислоты из этилена через этиленхлоргидрин, сначала в небольшом масштабе, и переработка мономера в пластические массы основывались на работе Рёма и были начаты в Германии в 1927 г., а спустя четыре года и в США. Известность полиметилакрилата с тех пор непрерывно возрастала. Благодаря своей прочности и замечательным оптическим свойствам полиметилакрилат, а в последнее время особенно полибутилакрилат, являются одним из наиболее важных видов пластических масс для получения небьющегося стекла . [c.419]


    Из таблицы видно, что на константу передачи цепи существенное влияние оказывает как строение макрорадикала, так и строение алкил (арил)фосфина. Полистирольные радикалы более реакционноспособны в реакции с фосфинами, чем полиметилметакрилатные, и этим объягаяется возможность выделения теломеров при реакции фосфинов с акрилатами. Фосфины более реакционноспособны по отношению к полиметилметакрилатному радикалу, чем к-бутилмер-каптан. В алифатическом ряду заместитель мало влияет на реакционную способность. При переходе от алкилфосфинов к фенилфосфину константа передачи цепи на фосфин возрастает почти в 10 раз, что связано с возможностью образования более стабильных (за счет участия в распределении электронной плотности ароматического ядра) фенилфосфинильных радикалов. Этим объясняется легкость присоединения фенилфосфина к различным непредельным соединениям, которую наблюдали Б. А. Арбузов с сотрудниками [14]. Реакция фенилфосфина с эфирами акриловой и метакриловой кислот, нитрилом акриловой кислоты идет без инициатора при 120—130° С. При указанных температурах чистый метилметакрилат подвергается термической полимеризации с ощутимой скоростью [13]. Кроме того, источником радикалов могут быть пероксиды, образующиеся при взаимодействии растворенного в мономере кислорода сего молекулами, или перокси-радикалы со структурой СН2(Х)СН—О—О.  [c.27]

    Совместной полимеризацией метакрилатов и акрилатов получают гомогенные сополимеры, Сополимеризацию можно проводить всеми известными методами, причем практикуется она с самого начала промышленного применения этих мономеров. В 1931 г. были запатентованы [431 сополимеры метилметакрилата с эфирами акриловой и метакриловой кислот, которые предлагались как склеивающие прослойки безосколочных трехслойных стекол, пресскомпозиции и лаки. [c.93]

    Начало промышленного выпуска эмульсионных сополимеров акриловых эфиров с винилацетатом относится к 1930 г. [23]. Наилучшим компонентом для сополимеризации с винилацетатом считается бутилакрилат [24[. Он повышает влагостойкость, которой не отличается гомополимер винилацетата. При сополимеризации указанных компонентов в молярном соотношении 1 1 заметным образом улу шается эластичность в широком температур-турном интервале. Эмульсии, полученные сополимеризацией этих компонентов в присутствии небольшого количества акриловой кислоты, имеют хорошую устойчивость в слабокислой среде. Перед введением пигмента в эмульсию необходимо добавить аммиак. Эмульсии изготовляют с содержанием 50 о сухого остатка и можно смешивать с другими эмульсиями. Их применяют для получения прозрачных пленочных покрытий, стойких но отношению к воде. Ими также пропитывают кожу, бумагу и текстильные изделия. Эмульсионные сополимеры винилацетата с акрилатами, используемые в качестве лакокрасочных смол, в довоенной Германии выпускались для продажи под названием акронал. Путем полимеризации компонентов при соотношении 1 1 в присутствии винилхлорида получают эмульсионный тройной сополимер, образующий более твердую, водостойкую и неклейкую пленку, в которую можно ввести большое количество пигмента [c.100]

    Акриловыми смолами, или акрилатами (точнее, полиакрилатами), называют полимеры акриловой кислоты и ее производных. Они представляют собой прозрачные бесцветные вещества, обладающие исключительной светостойкостью. Наиболее широкое применение получили полимеры метилового эфира метакриловой кислоты, полимеры нитрила акриловой кислоты и сополимеры на их основе. Метиловый эфир метакриловой кислоты, или метилметакрилат, является исходным продуктом для получения полиметилметакрилата. Полимер обладает хорошей механической прочностью, большой химической стойкостью и стоек к воздействию воды. Метилметакрилат — прозрачная бесцветная жидкость с характерным эфирным запахом, температура плавления —48° С, температура кипения 100,3° С, плотность 0,9490 г см . Он хорошо смешивается с эфиром и спиртом и хорошо растворяется в других органических растворителях. Полимеризация метилового эфира метакриловой кислоты и других акрилатов производится под воздействием тепла в присутствии перекисных инициаторов. Наибольшее распространение получил блочный метод полимеризации, однако применяют также и эмульсионный метод. Блочный метод полимеризации применяют для получения так называемых органических стекол в виде листов и блоков. Сущность его заключается в смешивании мономера с инициатором и заливке смеси в формы. Иногда к смеси мономера и инициатора добавляют пластификаторы, например фосфаты или фталаты Для заливки обычно используют стеклянные формы, составлен ные из двух листов зеркальных силикатных стекол, между края ми которых расположены прокладки из резины или пластмассы Расстояние между стеклами равно толщине получаемого блока Форму оклеивают с краев бумагой. Полимеризация смеси в фор ме происходит при повышенной температуре (от 45—50° в начале, до 100° С в конце процесса). Для этого формы помещают в термостат, в котором температура повышается по заданному режиму. Процесс полимеризации также может протекать в две [c.317]


    Благодаря своему практическому значению полимеризация акрилатов и метакрилатов явилась предметом многих исследований [1994, 2142, 2204— 2212]. Результаты этих исследований коротко можно сформулировать следующим образом. При обычной температуре самопроизвольная полимеризация протекает в незначительной степени [2011, 2213]. Она приводит обычно к образованию низкомолекулярных жидких полимеров с малой вязкостью [2214], и ее результаты часто бывают невоспроизводимыми [2213]. Нагревание значительно ускоряет процесс полимеризации благоприятное влияние на полимеризацию метакрилатов оказывает также повышение давления. Однако чистые не содержащие кислорода эфиры акриловой и метакриловой кислоты устойчивы и не изменяются даже при длительном нагревании до 100 в атмосфере инертного газа [2142, 2207]. Следы кислорода вызывают быструю полимеризацию, идущую с выделением тепла, которая моншт даже привести к взрыву. В связи с этим стоит упомянуть, что метилакрилат пе полимеризуется, если его в течение нескольких дней нагревать до 100° в никелевом сосуде однако если перед нагреванием прибавить к мономеру стеклянный порошок, то эфир в течение короткого времени превращается в полимер [2206]. Пе меньший интерес представляет обнаруженное Штаудингером [2204] влияние кислорода на фотонолимеризацию метилакрилата. Точно так же, как и у винилацетата, фотополимеризация метилакрилата протекает в атмосфере азота или углекислого газа быстрее, чем на воздухе (ср. стр. 335). По механизму и конечным результатам полимеризация акрилата и метакрилата подобна полимеризации винилацетата, стирола и бутадиена. Образующиеся полиакрилаты и полиметакрилаты также растворимы в исход- [c.458]

    Эмульсионную полимеризацию акрилатов применяют для получения литьевых и прессовочных порошков, а также стойких водных дисперсий типа латекс . Процесс в общем подобен эмульсионной полимеризации других виниловых мономеров. Воду и эфир берут в отношении 2—3 1 (модуль). Инициаторами обычно служат водорастворимые перекиси (перекись водорода, персульфат аммония и другие персульфаты). Как известно, весьма хороший эффект дают надсернокислые соли, так как они сравнительно легко отмываются от полимера и позволяют проводить реакцию полимеризации без эмульгатора (или с меньшим его содержанием). В качестве эмульгаторов применяют различные мыла (например, олеиновое и кокосовое), сульфированные масла, желатин, некаль и др. Опециальными эмульгаторами для бисерного варианта являются полимеры акриловой и метакриловой кислот, а также другие водорастворимые синтетические полимеры. В состав реакционной смеси обычно входит пластификатор (дибутил-, диоктилфталат, дибутил-себацинат и др.), который в зависимости от состава мономера и назначения полимера может быть внесен в различных соотношениях (от 5 до 30%). [c.329]

    Акрилаты . К этой группе относятся полимеры и сополимеры акриловой и метакриловой кислот и их эфиров, акрилонихрила, акрил-амида и некоторых других производных. В промышленности полимеризация этих мономеров осуществляется в присутствии перекиси бензоила или водорастворимых перекисных соединений блочным, эмульсионным или суспензионными методами. Акриламид обычно полимеризуют в водном растворе. [c.212]


Смотреть страницы где упоминается термин Полимеризация эфиров акриловой кислоты ) (акрилатов): [c.240]    [c.88]    [c.603]    [c.70]    [c.87]    [c.57]    [c.413]    [c.104]    [c.59]    [c.282]    [c.836]    [c.299]    [c.160]    [c.35]   
Смотреть главы в:

Лабораторный практикум по химии и технологии высокомолекулярных соединений -> Полимеризация эфиров акриловой кислоты ) (акрилатов)




ПОИСК





Смотрите так же термины и статьи:

Акриловая кислота

Акриловая кислота полимеризация

Акриловая кислота эфиры Акрилаты

Акриловая кислота, полимеризаци

Акриловая кислота, эфиры

Акриловая полимеризация

Полимеризация кислот

Работа Л2 71. Полимеризация эфиров акриловой кислоты (акрилатов)



© 2025 chem21.info Реклама на сайте