Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения хрома в степени окисления

    Атомы металлических элементов в отличие от неметаллических обладают значительно большими размерами атомных радиусов. Поэтому атомы металлических элементов сравнительно легко отдают валентные электроны. Вследствие этого они обладают способностью образовывать положительно заряженные ионы, а в соединениях проявляют только положительную степень окисления. Многие металлические элементы, например медь Си, железо Ре, хром Сг, титан Т1, проявляют в соединениях разную степень окисления. [c.94]


    Если амфотерный элемент имеет в соединениях несколько степеней окисления, то амфотерные свойства наиболее ярко проявляются для промежуточной степени окисления. Например, у хрома известны три степени окисления-( +II), ( + 111) и ( + У1). Для Сг " кислотные и основные свойства выражены в равной степени, тогда как у Сг" наблюдается преобладание основных свойств, а у Сг преобладание кислотных свойств  [c.99]

    Соединения хрома. В соединениях с кислородом хром проявляет ( степени окисления +6, -f 3 и +2. Из них наиболее устойчивы в обыч-1 ных условиях соединения со степенью окисления, равной трем. В этой же степени окисления хром входит большей частью и в природные соединения (хромистый железняк). Соединения хрома низшей сте- пени окисления (+2) легко окисляются, а соединения высшей степе- ни окисления (+6) все являются окислителями. [c.142]

    Соединения Сг (Ш). У хрома степень окисления +3 является наиболее устойчивой. Координационное число хрома (П1) равно шести, [c.607]

    Окисление железа (И) в железо (III) может быть осуществлено в щелочной среде большинством окислителей и кислородом воздуха, а в кислой среде — азотной и хлорной кислотами и кислородом воздуха. Ионы марганца окисляются различными окислителями, образуя окрашенные анионы различных степеней окисления марганца. Восстановители в кислой среде восстанавливают соединения марганца, хрома, железа и висмута из их высших степеней окисления до соединений низших степеней окисления, Bi -ионы могут восстанавливаться до металлического состояния. [c.39]

    Характерная степень окисления +6. Наряду с этим хром дает устойчивые соединения со степенью окисления +3, молибден — иногда +4. В других степенях окисления (+1, +2, +4, +5) хром и его аналоги образуют неустойчивые соединения. Некоторые свойства элементов приведены в табл. 22.1. [c.376]

    В противоположность хрому, шестивалентные Мо и даже в кислой среде могут быть восстановлены только сильными восстановителями. В частности, при действии водоро/ а в момент выделения последовательно образуются различно окрашенные соединення низших степеней окисления. [c.373]

    Соединения железа, хрома, висмута низших степеней окисления способны окисляться, а соединения высших степеней окисления—восстанавливаться. [c.36]

    Степени окисления тех элементов побочных подгрупп, соединения которых наиболее часто применяются в химической практике, сле< 1/ет запомнить. К таким элементам относятся хром (степени окисления +6 и +3), марганец (+7, +6, +-4, +2) железо (+3, +2), кобальт, никель (+2, гораздо реже +3), медь (+2, +1), цинк (+2), [c.7]


    Элементы подгруппы хрома в своих соединениях проявляют степени окисления от - -2 до +6. Сверху вниз в подгруппе устойчивость соединений с более высокими степенями окисления металлов увеличивается. [c.316]

    Элементы подгруппы хрома проявляют также степени окисления +5, +4, -+-3, 4-2. Но наиболее типичны соединения высшей степени окисления, которые во многом весьма похожи на соответствующие соединения серы. С водородом элементы подгруппы хрома соединений не образуют. [c.195]

    Элементы подгруппы хрома проявляют также степени окисления 4-5, +4, - -3, -1-2, Но наиболее типичны соединения высшей степени окисления, которые во многом [c.253]

    Отсюда видно, что хром может проявлять в соединениях различные степени окисления — от +1 до +6 из них наиболее устойчивы соединения хрома со степенями окислениями +2, +3, +6. Таким образом, в образовании химических связей участвует не только электрон внешнего уровня, но и пять электронов -подуровня второго снаружи уровня. [c.254]

    Наиболее устойчивыми являются соединения со степенью окисления хрома -З. Соединения же хрома (И) являются сильными восстановителями и легко окис/яют-ся, при этом Сг+ превращается в Сг+ Сг+ —1ё=Сг . Например, гидроксид хрома (И) легко окисляется кислородом воздуха до гидроксида хрома И1)  [c.320]

    Исследования, проведенные в нашей стране, позволили впервые в мировой практике предложить способ биохимической очистки соединений шестивалентного хрома (хроматов и бихроматов), а также хлоратов и перхлоратов. Метод основан на способности специально выведенных микроорганизмов использовать соединения хрома при окислении органических веществ, содержащихся в сточных водах. При этом в нейтральной или слабощелочной среде происходит восстановление ионов шестивалентного хрома до трехвалентного, который осаждается в виде гидроокиси, а хлораты и перхлораты восстанавливаются до практически безвредных хлоридов. Степень очистки достигает 99,4%, остаточное содержание хрома в стоках не превышает 0,4 мг/л. Технологическая схема включает усреднение производст- [c.57]

    Действие окислителей и восстановителей. Сильные окислители окисляют трехвалентный хром и двухвалентные Ре++, N1++, Со и Мп++ до соединений высшей степени окисления. Так, окисление трехвалентного хрома в хромат осуществляется в щелочной среде хлором, бромом, перекисями, гипохлоритами, двуокисью свинца и марганца. [c.184]

    Интересно отметить, что хром в металлическом состоянии имеет металлическую валентность 6, соответствующую степени окисления + 6, характерной для хроматов и бихроматов, а не более низкой степени окисления -ЬЗ, характерной для солей хрома металлы марганец,, железо, кобальт и никель тоже имеют металлическую валентность 6, хотя почти все эти элементы образуют соединения со степенями окисления + 2 и -ЬЗ. Ценные физические свойства переходных металлов обусловлены высокой металлической валентностью этих элементов. [c.494]

    Соединения молибдена и хрома в степени окисления +6 в отличие от соединений хрома в той же степени окисления являются очень слабыми окислителями и могут быть восстановлены сильными восстановителями в соединения низших степеней окисления. [c.101]

    Соединения Сг([П), Мо(П1), W (III). У хрома степень окисления -ЬЗ является наиболее устойчивой. Координационное число хрома (HI) равно шести, поэтому его комплексы (структурные единицы) имеют форму октаэдра. Валентные электроны в октаэдрических комплексах Сг (HI) располагаются только на связывающих и несвязывающих орбиталях  [c.558]

    Кроме того, они образуют соединения, отвечающие степени окисления +2 и -ЬЗ. Соединения хрома (III) по свойствам во многом сходны с соединениями алюминия (III). Это объясняется тем, что радиусы ионов Сг + (0,63А) и AF+ (0.54А) близки. Гидроксид хрома Сг(ОН)з, как и А1(0Н)з, амфотерное соединение. В отличие от соединений алюминия соединения хрома (III) обладают восстановительными свойствами. Высшие оксиды рассматриваемых элементов ЭО3 и соответствующие им гидроксиды Н2ЭО4 обладают кислотными свойствами. Соединения хрома (VI) СгОз, Н2СГО4, Н2СГ2О7 и их соли — сильные окислители. [c.97]

    Действие окислителей и восстановителей. Сильные окислители окисляют Сг++ +, Fe++, Ni++, Со++ и Мп++ до соединений высшей степени окисления. Так, в щелочной среде хлор, бром, перекиси, гипохлориты, двуокись свинца, перманганат окисляют трехвалентный хром в хромат. [c.290]

    ХРОМА СОЕДИНЕНИЯ. ОксмЭ хрома (111) rjOj — темно-зеленые тугоплавкке кристаллы, т. пл. 2275° С, применяется под названием зеленый крон для изготовления очень устойчивых клеевой н масляной красок. Из СГ2О3 изготовляют катализаторы, получают хром, им окрашивают стекло и керамику. Соединения со степенью окисления X. +3 имеют зеленую или фиолетовую окраску. Они устойчивы на воздухе. Производные ак- [c.279]


    Наиболее устойчивая степень окисления молибдена и вольфрама +У1, для хрома характерны степени окисления 4-П1 и -НУ . Известны также и другие степени окисления данных элементов, однако соединения низших степеней окисления легко окисляются кислородом воздуха, поэтому с ними реже встречаются в лабораторной практике. [c.223]

    Для элементов подгруппы хрома известны соединения, отвечающие различным валентностям, вплоть до VI. Из всех них сколько-нибудь значительное применение находят только производные шестивалентных элементов и трехвалентного хрома, причем важнее других хромовые препараты. Соединения низших степеней окисления Мо и еще сранительно плохо изучены. 2  [c.365]

    Наиболее стабильная степень окисления молибдена и вольфрама + 6 для хрома характерны степени окисления +3 и - 6. Как и в других побочных подгруппах, в УШ подгруппе при переходе к элементам сверху вниз стабилизируются высокие степени окисления. Известны также другие степсни. окисления рассматриваемых элементов, однако соединения низших степеней окисления легко окисляются кислородом воздуха. Восста ювленнем соедиисний Сг " сравнительно легко получаются соединения Сг растворы этих соединений иногда применяют в качестве активных поглотителей кислорода. [c.210]

    Для хрома характерны соединения со степенью окисления +3. Их получают непосредственным взаимодействием хрома с галогенами или в других химических процессах. Так, соль СгС1з — кристаллы красно-фиолетового цвета — чаще всего находится в полимерном состоянии. Ион Сг + склонен к образованию многочисленных комплексных солей, в которых лигандами являются НзО С1 ЫНз. Склонность к образованию комплексов с координационным числом 6 объясняется структурой иона  [c.345]

    Решете. Хром в соединениях имеет степени окисления +6, +3. Его оксиды — СгОз и СГ2О3. СГ2О3 — амфотерный оксид. Следовательно, СгОз — кислотный оксид. [c.11]

    В химическом отношении все металлы характеризуются сравнительной легкостью отдачи валентных электронов и, как следствие этого, способностью образовывать положительно заряженные ионы и проявлять в своих соединениях только положительную окисленность. Многие металлы, например железо, хром, марганец, имеют в различных соединениях разную степень окисленности, но она всегда положительна. В связи с этим металлы в свободном состоянии являются восстановителями. Восстановительная способность разных металлов неодинакова. Для реакцщ в водных растворах она определяется положением металла в ряду напряжений и концентрацией (актив1юстью) его нонов в растворе. [c.514]

    Хром находится в 6-й группе, в его электронной оболочке на два электрона больше, чем у титана. В основном состоянии атом хрома содержит две полузаполненные оболочки [Аг]3( 4з с шестью неспаренными электронами. Благодаря наличию шести валентных электронов и не очень высокой электроотрицательности хрома (1,6) химия его очень богата и разнообразна он проявляет все степени окисления от -2 до -Ьб. Как и в случае титана, самые низкие степени окисления (-2, -1,0 и -Ы) проявляются только в комплексных соединениях с л-акцепторными лигандами, например в карбониле Сг(СО)в. Наиболее характерна для хрома степень окисления -ЬЗ и, соответственно, электронная конфигурация иона В природе хром встречается в основном в виде соединений Сг(Ш), например хромистого железняка ГеО СГ2О3, правда на Урале встречается красная свинцовая руда РЬСгО , в которой хром находится в степени окисления -Ьб, характеризуюш ейся выраженными окислительными свойствами. [c.347]

    В своих соединениях проявляет степень окисления от +2 до +б и обнаруживает двойную аналогию с актинием и с. чгеталладт У1В-группы. Уран, как и хром, реагирует с растворами Н2804 и НС1 с выделением водорода. Наиболее устойчивы для урана степени окисления -4 и +6. [c.122]

    VI группы периодической систе.чы элементов ат. н. 24, ат. м. 51,996. Металл серебристого цвета. В соединениях проявляет степени окисления -f 2, -Ь 3 и + 6. Состоит из стабильных изотопов Сг (4,49%), Сг (83,78%), ИСг (9,43%) и Сг (2,30%). Из шести радиоактивных изотопов важнейшим является i r с периодом полураспада 27,8 дня. X. открыл (1797) франц. химик Д. Вокелен в мп-нера.ле крокоите, выделив его в металлическом состоянии. Чистый X. впервые получил (1854) нем. химик Р. Бунзен электролизом хлористого хрома. В пром. масштабе X. начали получать (1866 — 70) в виде феррохрома, восстанавливая хромовую руду углеродом. Содержание X. в земной коре 3,5-10 %. Из минералов наибольшее значение имеет хромит (хромистый железняк) FeO- raOg. Плотность X. (т-ра 20° С) 7,19 г/ст решетка кубическая объемноцентрированная с периодом а = 2,885 А  [c.692]

    Сильные восстановители (HJ, HaS, HNOg и др.) восстанавливают соединения хрома, марганца, железа, никеля и кобальта в высшей степени окисления до соединений низших степеней окисления. [c.185]

    Тяжелые переходные элементы проявляют явную тенденцию к образованию соединений с более высокими степенями окисления. В то время как степень окисления (+П) известна для всех элементов первого переходного ряда, кроме скандия, для тяжелых переходных элементов она не характерна, и имеется лишь у С(3, Нд, Рс1 и Р1. Аналоги кобальта — родий и иридий — проявляют степени окисления только (+И1) и выше. Соединения хрома (П1) являются наиболее устойчивыми, а соединения молибдена и вольфрама в этой степени окисления — сильные восстановители в химии Мо и Ш преобладают соединения с их степенью окисления (-[-У ). В целом устойчивость соединений тяжелых переходных металлов, обладающих высшей степенью окисления (равной номеру группы) очень большая, Так, ион ДеОГ не является сильным окислителем, подобно иону МпОГ-Примерами соединений со степенью окисления (+УП1) являются тетраоксиды рутения и осмия Весьма устойчивыми по сравнению с элементами первого переходного ряда являются соединения Рс ", Pt и Аи" получены даже соединения Аи . [c.394]

    Характерным свойством многих катионов -элементов (марганца, хрома, железа, никеля, кобальта, ртути) являются их способность к реакциям окисления — восстановления. Сильные окислители хлор, бром, перманганагТ, персульфаты и другие окисляют их до соединений высшей степени окисления. Восстановители HI, H2S, H2SO3 в кислой среде восстанавливают соединения хрома, марганца, железа, никеля и кобальта до соединений низших степеней окисления. Особенно [c.73]

    Недавно были критически рассмотрены [192] и обобщены [193] новейшие направления в кинетических методах анализа. Иногда аналитика наиболее удовлетворяет простейшая форма использования катализа. Например, в смеси мышьяка(П1) и железа(И) сначала титруют церием(1У) железо(П), так как реакция между церием(1У) и мышь-яком(И1) идет очень медленно и не мешает определению железа, а затем, после того как все железо(Н) прореагировало, добавляют подходящий катализатор (OSO4) и тут же титруют мышьяк(И1). Поскольку церий не дает неустойчивых соединений промежуточных степеней окисления, индуцированные реакции в этом случае не мешают. Для ускорения реакции между хромом(У1) и ураном(1У) [c.358]


Смотреть страницы где упоминается термин Соединения хрома в степени окисления: [c.94]    [c.425]    [c.135]    [c.182]    [c.355]    [c.531]    [c.101]    [c.525]    [c.531]   
Смотреть главы в:

Неорганическая химия Издание 2 -> Соединения хрома в степени окисления




ПОИСК





Смотрите так же термины и статьи:

Окисление соединениями хрома

Окисление хрома III

Окисления степень



© 2025 chem21.info Реклама на сайте