Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие представления о строении макромолекул

    П. П. Веймарн и В. Оствальд предложили рассматривать свойства дисперсных систем только с позиции их степени дисперсности, не учитывая гетерогенности. Более общие представления о свойствах коллоидных растворов были развиты Н. П. Песковым, который подразделял коллоиды на два класса к первым он отнес коллоиды, которые самопроизвольно диспергируют в растворителе, образуя коллоидные растворы. Если вызвать коагуляцию такой системы, то в коагуляте окажется много растворителя. После удаления электролита (коагулята) коагулянт, как правило, сохраняет способность вновь диспергировать в растворителе. Второй класс коллоидов, по Н. П. Пескову, — это системы, у которых коагуляция необратима, коагулят (осадок), как правило, не содержит дисперсной среды. При этом только вторая группа коллоидных растворов представляет собой типичные коллоиды, инертные по отношению к дисперсионной среде. Как это ни парадоксально, но вещества, получившие впервые в истории науки название коллоиды (гуммиарабик, белки, крахмал), оказались не настоящими коллоидами. Водные растворы этих веществ в отличие от типичных коллоидов представляют собой гомогенные термодинамически равновесные системы, устойчивые и обратимые, т. е. представляют собой истинные растворы макромолекул высокомолекулярных соединений (ВМС). Различие двух типов коллоидов связано в значительной мере с гибкостью и асимметричным строением макромолекул. Последние взаимодействуют с растворителем (дисперсионной средой) подобно низкомолеку- [c.382]


    Становится все более очевидным, что, кроме целлюлозы, в составе клеточной стенки нет ни одного линейного полимера, который состоял бы из моносахаридных звеньев одного типа, а если такие полимеры и суш ествуют, то они составляют лишь незначительную часть клеточной оболочки. Как правило, для нецеллюлозных полисахаридов оболочки независимо от лх происхождения (будь то полисахариды хвойных, полисахариды из древесины лиственных пород, злаковых трав или из двудольных растений) характерно следующее строение их молекула представляет собой линейную основную цепь, от которой ответвляются многочисленные боковые цепи, состоящие из одного остатка. Эта основная цепь (скелет молекулы) обычно составлена из однотипных единиц, чаще всего это пентозан с р-связями. В качестве боковых цепей часто служат остатки двух и более различных сахаров один из них, по-видимому,— уроновая кислота. Это, конечно, всего лишь схематичное изображение. Мы его здесь приводим для того, чтобы дать общее представление о природе макромолекул, которые нам предстоит рассмотреть. На самом деле, как мы увидим далее, нам придется иметь дело с чрезвычайно разнообразными макромолекулами. [c.171]

    Положение, что макромолекулы целлюлозы не являются вытянутыми жесткими палочками, основанное на общих представлениях о строении макромолекул полимеров и об ограниченной подвижности отдельных звеньев в макромолекуле является в настоящее время общепризнанным. Экспериментальное доказательство сгибаемости макромолекул целлюлозы было дано в [c.37]

    Общие представления о строении макромолекул [c.17]

    ОБЩИЕ ПРЕДСТАВЛЕНИЯ О СТРОЕНИИ МАКРОМОЛЕКУЛ [c.17]

    Следовательно, для кристаллизации полимеров приобретает большее значение регулярное строение их макромолекул. В силу этого представляется необходимым дать общие представления о регулярности строения полимерных цепей и ее нарушениях. [c.175]

    Сопоставление данных, приведенных в табл. 5.2 и 5.3, показывает, что пленки ПЭАУ, полученные из исходных растворов, практически не различаются по своим деформационно-прочностным свойствам. При добавлении к раствору в ДМФА метилэтилкетона или бутил-ацетата в случае ПЭАУ-1 прочностные характеристики остаются неизменными, в случае ПЭАУ-2 прочность возрастает в два раза. Увеличение прочности сопровождается перегибом на деформационной кривой при относительном удлинении 200% (рис. 5.11). Начальные участки кривых зависимости Стр—е как для исходных пленок ПЭАУ-1 и ПЭАУ-2, так и для пленок, полученных из смеси растворителей, имеют одинаковый характер и близкие параметры. С другой стороны, условно-равновесный модуль в случае ПЭАУ-2 уменьшается при добавлении МЭК и БАЦ, причем изменение сх. коррелирует антибатно с разрывной нагрузкой при тех же концентрациях добавок. Уменьшение E o у ПЭАУ-2, линейного по своему строению, так же, как и ПЭАУ-1, но обладающего свойствами пространственно-сшитого эластомера (высокая прочность, ограниченное набухание), благодаря присутствию в его макромолекулах большого числа полярных групп, между которыми возникают дополнительные физические связи, предположительно можно связать с характером структурных превращений в растворе ПЭАУ-2 при добавлении к нему МЭК и БАЦ и соответственно с изменением надмолекулярной структуры пленок. Действительно, поскольку функциональность макромолекул ПЭАУ-2 не изменяется при добавлении МЭК или БАЦ, уменьшение числа полярных групп, между которыми возникают дополнительные физические связи, может быть следствием изменения их взаимного расположения в результате перестройки надмолекулярной структуры. Вероятно, при добавлении МЭК или БАЦ к раствору ПЭАУ-2 структурные элементы в нем формируются таким образом, что большая часть полярных групп оказывается внутри них, а группы, оставшиеся на поверхности структурных элементов, образуют редкую пространственную сетку, о чем свидетельствует увеличение степени набухания. Уменьшение числа физических поперечных связей между структурными элементами способствует увеличению подвижности молекулярных цепей, следствием чего является ускорение протекания релаксационных процессов (уменьшение параметра К) и увеличение прочности при разрыве. Возрастание прочности при уменьшении числа поперечных связей на первый взгляд противоречит общим представлениям о прямой связи прочности с концентрацией поперечных связей в пространственно-сшитых полимерах. Однако эти противоречия объясняются спецификой вклада в пространственную сетку полиуретанов прочных поперечных и слабых межмолекулярных связей. Показано [61], что уменьшение числа поперечных связей в полиуретанах способствует увеличению гибкости полимерных цепей последние благодаря этому сближаются, что ведет к образованию между ними большего числа межмолекулярных связей, определяющих прочностные свойства полиуретанов. [c.235]


    Эти выводы представляют значительный интерес. Не изменяя общих представлений о строении макромолекул целлюлозы, советские исследователи впервые показали, что степень [c.41]

    Положение, что макромолекулы целлюлозы не являются вытянутыми жесткими палочками, основано на общих представлениях о строении макромолекул полимеров и об ограниченной подвижности отдельных звеньев в макромолекуле и является в настоящее время общепризнанным. Экспериментальное доказательство сгибаемости макромолекул целлюлозы было дано в работах советских исследователей, изучавших структуру целлюлозы и ее эфиров, в частности структуру и механические свойства растянутых и не растянутых пленок, полученных из целлюлозы и ее эфиров. [c.57]

    В последние годы в работах В. А. Каргина, А. И. Китайгородского и Г. Л. Слонимского была выдвинута новая теория внутреннего строения полимеров, которую можно назвать теорией пачечного строения полимеров. В основе этой теории, базирующейся на опытных данных, лежит представление, что макромолекулы полимера группируются в пачки, в каждой из которых существует известная упорядоченность в расположении макромолекул и их звеньев, подобно тому, как представлено на рис. 195,а. Все макромолекулы данной пачки располагаются в основном вдоль общего направления ее (которое не является прямолинейным). Пачки намного длиннее макромолекул, т. е. наряду с макромолекулами, расположенными параллельно, в пачке содержатся и макромолекулы, расположенные последовательно. Пачки обладают гибкостью и могут образовывать структуры, подобные представ- [c.580]

    Функциональность мономеров является одним из основных понятий в области поликонденсации [2-4, 7, 9, 12, 13, 31, 36, 37, 64, 65, 71, 72, 82-87]. Обычно под ней понимают общее число функциональных групп в исходном веществе. Со времени Карозерса [85] считалось, что лишь бифункциональные вещества способны к образованию поликонденсацией макромолекул линейного строения, монофункциональные вещества не способны образовывать полимеры, а поликонденсация три- и более функциональных веществ приводит к образованию разветвленных и сшитых полимеров. Развитие теории и практики поликонденсационных процессов внесло существенные коррективы в эти представления. Особенно это нашло отражение в публикациях Коршака [31, 37, 38, 71, 72], в которых были обобщены и сформулированы представления о функциональности в процессах поликонденсации, установлена ограниченность правила функциональности Карозерса. [c.18]

    Хотя в общем приведенные выше представления о каталитическом действии белков в присутствии ионов кобальта являются логичными и достаточно обоснованными, по-видимому сложность и большое разнообразие накладываемых друг на друга элементарных процессов, связанных в том числе и со сложным строением и поведением белковых макромолекул на поверхности электрода, заставляет многих исследователей проводить дальнейшие поиски более точного механизма рассматриваемых процессов, с учетом большого разнообразия факторов и их влияния на процесс катализа реакции электрохимического выделения водорода. Об этом достаточно определенно сказана С. Г. Майрановским в уже упоминавшейся монографии [10  [c.240]

    Исследование процесса образования лигнина в растениях представляет значительный теоретический и практический интерес Выяснение его строения формирует представления о путях его биосинтеза, а знание общих и частных вопросов биосинтеза лигнина поможет в понимании деталей структурообразования макромолекул лигнинов различных видов растений [c.109]

    В связи с тем, что в последние годы в полимерной науке также все в большей мере проявляется тенденция к изучению проблем, связанных с индивидуальностью макромолекул, можно ли с уверенностью утверждать, какой из подходов, использованных этими двумя крупнейшими учеными, является более перспективным. Во всяком случае, благодаря развитию теории эффекта исключенного объема в настоящее время появилась возможность связать конфор-мационные характеристики макромолекулы как целого, которые определяются на основании исследования различных молекулярных свойств полимеров в растворе, с химической природой цепи. Каучукоподобная упругость также является общим специфическим свойством полимерных веществ, однако, если теория упругости каучука вначале строилась на основе общих абстрактных представлений об энтропийной природе упругости, то в настоящее время оказалось необходимым учитывать вклад конформационной энергии цепи, который имеет вполне определенное значение для полимерных молекул различного строения. [c.153]

    Общие положения. При исследовании колебательных спектров полимеров необходимые сведения о строении объекта можно получить при двух подходах. В одном из них экспериментально устанавливается эмпирич. связь какой-либо спектральной характеристики (напр., положения данной полосы или ее интенсивности) со свойством полимера, напр, микротактичностью, степенью кристалличности, содержанием химич. изомеров и др. В этом случае неважны причины, вызывающие наблюдаемое спектральное изменение, и для выводов о строении полимера обычно достаточно рассматривать лишь детали спектра. При другом подходе важны причины спектральных изменений и фундаментальная связь колебаний макромолекул с их структурой. Оба подхода оправдывают себя на практике, однако дальнейший прогресс метода К. с. полимеров связан с развитием теоретич. представлений. [c.530]


    Этот вопрос впервые был рассмотрен Слонимским [561. Так, для описания кинетики высокоэластической деформации Каргиным и Слонимским [57—591 была предложена (рис. 4.14) модель макромолекулы (одномерный случай), находящейся в среде (в растворе или в блоке). В основу общей модели (рис. 4.14, а) и ее упрощенной формы (рис. 4.14, б) было положено представление о сегментальном строении цепных макромолекул и соответствующих особенностях их теплового движения. Модель Слонимского содержит элементы, ответственные за упругость, высоко- [c.127]

    Представление о местном упорядочении макромолекул или их звеньев в волокне не имеет, однако, ничего общего с мицеллярной теорией строения целлюлозы (см. стр. 71). Представление [c.102]

    Общим признаком текстильных волокон является то, что все они построены из органических высокомолекулярных соединений, которые, в свою очередь, синтезированы из низкомолекулярных соединений — мономеров. Молекула высокомолекулярного или высокополимерного соединения, или просто полимера, имеет линейное строение и реже — сетчатое. Она построена из многократно повторяющихся, одинаковых для данного вещества остатков мономера, или элементарных звеньев — А—А—А—А— А—А—, имеет большие размеры и высокий молекулярный вес, достигающий нескольких миллионов, и поэтому называется в отличие от обычных молекул — макромолекулой. Число (п) повторяющихся элементарных звеньев (А) называется степенью полимеризации. Молекулярный вес (М) может быть представлен как М= (Л ). [c.10]

    В. А. Каргина, А. И. Китайгородского и Г. Л. Слонимского была выдвинута новая теория внутреннего строения полимеров, которую можно назвать теорией пачечного строения полимеров. В основе этой теории, базирующейся на опытных данных, лежит представление, что макромолекулы полимера группируются в пачки, в каждой из которых существует известная упорядоченность в расположении макромолекул и их звеньев, подобно тому, как представлено на рис. 205, а. Все макромолекулы данной пачки располагаются в основном вдоль общего направления ее (которое не является прямолинейным). Пачки намного длиннее макромолекул, т. е. наряду с макромолекулами, расположенными параллельно, в пачке содержатся и макромолекулы, расположенные последовательно. Пачки обладают гибкостью и могут образовывать структуры, подобные представленным на рис. 205, б и более сложные. Наряду с пачечными структурами эта теория учитывает существование и глобулярных (щаровидных) и других образований из макромолекул. Глобулярные надмолеку-лярные структуры существенно слияют на механические свойства полимеров. [c.571]

    Как уже отмечалось выше, зависимость между индивидуальными свойствами и структурой изолированных макромолекул и макроскопическими свойствами полимеров в блоке является достаточно сложной. Поэтому на современном уровне полимерной науки, которая развивается на основе самых общих представлений о специфических особенностях ценных молекул, по мере дальнейшей детализации теории удается лишь косвенно выяснить связь между индивидуальными характеристиками макромолекулы и йекоторыми физическими свойствами полимера. Иначе говоря, в настоящее время предсказания теории можно использовать лишь для нахождения корреляционных соотношений между структурой и свойствами полимера. Например, вряд ли можно говорить о возможности описания физических свойств расплавов или концентрированных растворов полимеров в терминах индивидуальных характеристик макромолекул. Задача детального обсуждения зависимости между различными макроскопическими свойствами и молекулярным строением полимера выходит за рамки предмета настоящей главы, и поэтому мы рассмотрим лишь два параметра, а именно температуру плавления и температуру стеклования полимера, которые, по-видимому, проявляют наиболее четкую связь со структурой макромолекул. Кроме того, анализ этих свойств подтвердит высказанную ранее идею о том, что молекулярная структура не является единственным фактором, определяющим макроскопические свойства полимера. [c.164]

    Наиболее точные данные о величине и форме белковой молекулы, включая конформацию полипептидных цепей и характер взаимодействия боковых радикалов, можно получить только с помошью рентгеноструктурного анализа. Правда, практические трудности, связанные с этим методом, таковы, что к настоящему времени его удалось применить только к весьма ограниченному числу белков. Для большинства же изученных препаратов вся доступная информация была получена с помощью менее совершенных, но зато и менее сложных физико-химических методов, которые позволяют использовать белковые растворы. Эти методы не,дают, как правило, точных сведений о деталях молекулярной архитектуры, и получаемое с их помощью изображение молекулы настолько несовершенно, что по нему можно оценить лишь ее очертания и форму. Однако они позволяют определить основные физические характеристики макромолекул, которые не только дают общие представления об их строении, но и позволяют применять более чувствительный метод дифракции рентгеновых лучей. Каковы же основные характеристики белковых препаратов, устанавливаемые этими методами  [c.127]

    Так называемая четвертичная структура фибриллярных белков мало изучена, но если иметь в виду, что эти белхи представляют собой резко асимметричные образования жесткого типа (например, трехтяжные спирали коллагена), то можно полагать, что на различных стадиях синтеза и укладки этих белков важную роль в организации структуры должны играть именно те факторы, которые ответственны за самоупорядочение в растворах жесткоцепных полимеров. Конечно, образование дисульфидных связей, которые накладываются на упорядоченную структуру, значительно осложняет расшифровку стадий процесса, приводящих к конечному строению фибриллярных белков. Но это не является ограничением применимости основных принципов образования жидкокристаллических систем к случаю природной организации белковых тел. Интересные фактические данные о структуре фибриллярных белков, которые могут быть использованы при анализе рассматриваемой проблемы, приводятся в монографии Михайлова [3]. Общие представления о механизме сборки макромолекул были изложены Френкелем [4]. [c.222]

    В результате большого количества исследований гуминовых кислот считается установленным, что их молекулы имеют сложное строение и в них содержатся ароматические ядра, азотсодержащие гетероциклические участки, боковые цепи с углеводными или азотсодержащими остатками и другие радикалы. Окончательные формулы гуминовых веществ еще не выяснены. Самое общее представление о строении молекулы гуминовой кислоты дает формула С. С. Драгунова для фрагмента ее макромолекулы, в которой (/) — ароматические ядра типа двух- или трехатомных фенолов, часть которых имеют двойные связи хиноидных группировок (2) — азотистый гетероцикл (3) — азот периферических цепей амидной природы (4) — углеводные или другие радикалы [c.548]

    Подведем некоторые итоги. Из изложенного следует, что как механические свойства полимеров в блоке и прежде всего высокоэластичность, так и специфическое поведение полимеров в растворах находят свое объяснение в гибкости длинных цепных образований, которыми являются макромолекулы полимеров. Иными словами, большие или меньшие участки полимерных цепей обладают независимой друг от друга подвижностью. Теоретическое истолкование наблюдаемых фактов можно поэтому осуществить на основе статистических представлений макромолекула может трактоваться как статистический ансамбль элементов с независимыми степенями свободы. Экспериментальное определение свойств отдельных макромолекул в растворах — их размеров, формы, оптической анизотропии, дипольных моментов и т. д.—дает позможность всесторонней пров рки статистической теории полимерных цепей. Задача последней состоит в вычислении названных параметров на основе имеющихся сведений о химическом строении макромолекул. В этом смысле теория макромолекул преследует те же цели, что и теория малых молекул, предназначенная для установления связи между различными молекулярными постоянными, например межатомными расстояниями, динольными моментами, поляризуемостью и т. д., и для вычисления этих постоянных. Теория малых молекул строится либо на квантовохимической, либо на полуэмнирической основе. Существующие в настоящее время методы квантовой химии недостаточно совершенны, и применение их сопряжено с (зчень громоздкими расчетами. Поэтому конкретные определения молекулярных постоянных и соотношений между ними обычно эффективно осуществляются с помощью полу-эмпирической теории, в то время как общие представления о природе этих постоянных имеют глубокое квантовомеханическое обоснование. В нолуэмпирическо теории малых молекул широко применяется валент- [c.40]

    Такой подход вполне оправдывается при рассмотрении зависимости структуры макромолекулы от присутствия в системе комплексообразующих соединений (оснований Льюиса), в частности полярного растворителя. Обычно эту зависимость связывают с изменением состояния активной связи М — А под действием таких агентов. Имеется в виду переход ионной пары (т. е. состояния активного центра, благоприятствующего избирательному образованию промежуточных комплексов определенной структуры) в разделенные пары или свободные ионы. Подобное изменение характера активных центров действительно может ослабить регулирующее влияние противоиона, а при полной диссоциации ионной пары целиком исключить его. Поэтому для процессов полимеризации, протекающих в полярных средах, такое представление о роли полярных соединений в известной мере оправдано. Однако значительные изменения в строении макромолекул часто наблюдаются в присутствии А1алых, а иногда ничтожных количеств полярного агента, т. е. в условиях, когда общая полярность среды практически не отличается от исходной. Один из хорошо известных примеров — синтез 1,4-1 ис-полиизо-прена под действием литиевых инициаторов, который оказался возможным лишь при исключении микропримесей из реакционных систем. По-видимому, механизм действия малых количеств различных ингибиторов стереоспецифичности состоит в образовании их комплексов с инициатором или активными центрами. Конечно, такие акты влияют на полярность и, следовательно, на длину связи М —А. Тем пе менее соответствующие эффекты [c.243]

    Карбогидразы могут быть эндогликозидазами, отщепляющими олигосахариды от углеводных цепей, и экзогликозидазами, которые отщепляют моносахариды от терминальных нередуцирующих концов цепей. Кроме того, имеются другие ферменты, например оксидазы, дезацетилазы и т. д., которые осуществляют различные превращения индивидуальных сахаров. Применение ферментов для определения строения групповых веществ крови позволяет проводить исследование в мягких условиях (температура, pH) и благодаря высокой специфичности ферментов облегчает получение строго определенных фрагментов лабильных макромолекул по сравнению с кислотным гидролизом. Трудность заключается в том, что механизм действия многих ферментов, нарушающих серологическую специфичность групповых веществ, пока еще не выяснен. Кроме того, не все ферменты действуют ira групповые вещества, даже если в составе последних находится группировка, которая в обычных условиях является специфическим субстратом для фермента. Тем не менее были получены важные данные о структуре участков групповых веществ, связанных с их серологической активностью при использовании ферментов микробов, специфически разрушающих тот или иной тип группового вещества. Общие представления о структуре макромолекул могут быть получены при использовании хорошо известных протеолитических ферментов. [c.189]

    Константы в соотношениях, приведенных выше, как показывает анализ, проведенный для большого числа полимеров, всегда представляют собой числа, большие нуля, но меньшие единицы. Более точное значение константы можно установить лишь зная особенности молекулярного строения и надмолекулярной структуры полимеров. Для этого все полимеры можно классифицировать по степени гибкости их цепей гибкоцепные, полужесткоцепные и жесткоцепные. При этом важно знать, содержат ли макромолекулы полимеров боковые группы или более крупные ответвления и имеются ли в них звенья разных видов (статистические сополимеры, блок-сополимеры). Проведенные подсчеты зависимостей числа полимеров N от отношения TdT - показали, что в общем случае они имеют вид, представленный на рис. 10.23. [c.273]

    Кинетика вулканизации смолонаполненных каучуков типа БС-45АК аналогична кинетике процесса вулканизации каучуков общего назначения С повышением температуры вулканизации до 200° С растет прочность, снижается плато вулканизации, при этом относительное и остаточное удлинения существенно не изменяются, что свидетельствует о, специфике вулканизации высокостирольных композиций При повышений температуры высокостирольный полимер деструктируется. Такая деструкция может осуществляться за счет термоокислительной деструкции бутадиеновых звеньев, а также при деполимеризации высокостирольных частей макромолекулы Количество и тип поперечных связей, так же как молекулярное строение каучука, характеризуют статическую и динамическую прочность вулканизата. В настоящее время следует, считать установленным, что в зависимости от степени поперечного сшивания статическая прочность вулканизатов изменяется по кривой с максимумом. У натурального каучука этот максимум соответствует концентрации поперечных связей 2,0 — 6,0 10 слг гУ полиизопре-нового — 3,0 — 5,0 10 см , бутадиен-стирольного — 1 — — 3,0 10 см- , карбоксилатного — 2,0 — 4,0 10 сжЧ Исходя из представлений, что разрушение вулканизата состоит из элементарных актов разрыва цепей была развита теория, объясняющая экстремальный характер этой зависимости. [c.44]

    Этот результат наглядно представлен также на рис. 21, где изображена зависимость длины сегмента Куна А от числа связей в боковой цепи полиалкилакрилатов и полиалкилметакрилатов по. вискозиметрическим данным и поступательному трению. Видно, что увеличение длины боковых групп в исследованных макромолекулах сопровождается монотонным возрастанием равновесной жесткости основной цепи макромолекул. Характер этой зависимости аналогичен для эфиров как полиакриловой, так и полиметакри-ловой кислот. Данные табл. 2 показывают, что это свойство является общим для большого числа исследованных макромолекул гребнеобразного типа с различным строением боковых радикалов. [c.90]

    Общепринятое представление о причинах изменения структуры макромолекулы с изменением полярности среды сводится к переходу контактных ионных пар в сольватированные (или в свободные ионы), т. е. к ослаблению (или исчезновению) регулирующего влияния противоиона. Универсальность такого подхода сомнительна, так как значительные эффекты изхменения структуры макромолекулы часто наблюдаются уже в присутствии малых, а иногда ничтожных количеств полярного агента, т. е. в условиях, когда общая полярность среды практически не отличается от исходной. Далее, полярные среды отнюдь не всегда вызывают уменьшение стереорегулярности их влияние способно проявляться в инверсии микроструктуры полимера (например, метилметакрилат) [1] или в образовании полимеров более однородного строения (например, бутадиен) [2]. Кинетические данные, известные для ряда анионных систем, также часто не согласуются с представлением о функциональной связи между полярностью среды и наблюдаемыми изменениями в строении полимера. Структурные параметры, характеризующие повышение ионного вклада реакции роста, не всегда меняются симбатно с константой скорости этой реакции. Заметим, наконец, что полярные эффекты в их обычном понимании должны были бы наблюдаться при полимеризации полярных мономеров (акрилатов и т. п.) и в отсутствие дополнительных агентов. Здесь можно было бы ожидать зависимости характера и степени стереорегулярности полимера от концентрации мономера (как полярного агента) в исходной реакционной смеси. Однако в действительности это, по-видимому, не имеет места. [c.115]


Смотреть страницы где упоминается термин Общие представления о строении макромолекул: [c.443]    [c.124]    [c.222]    [c.446]    [c.85]    [c.192]   
Смотреть главы в:

Введение в химию высокомолекулярных соединений -> Общие представления о строении макромолекул




ПОИСК







© 2025 chem21.info Реклама на сайте